• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            中南賽A題 Accumulation Degree

            Posted on 2008-05-05 20:59 oyjpart 閱讀(3060) 評論(9)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            Accumulation Degree
            Time Limit: 5000MS
            Memory Limit: 65536K
            Total Submissions: 248
            Accepted: 30

            Description

            Trees are an important component of the natural landscape because of their prevention of erosion and the provision of a specific ather-sheltered ecosystem in and under their foliage. Trees have also been found to play an important role in producing oxygen and reducing carbon dioxide in the atmosphere, as well as moderating ground temperatures. They are also significant elements in landscaping and agriculture, both for their aesthetic appeal and their orchard crops (such as apples). Wood from trees is a common building material.

            Trees also play an intimate role in many of the world's mythologies. Many scholars are interested in finding peculiar properties about trees, such as the center of a tree, tree counting, tree coloring. A(x) is one of such properties.

            A(x) (accumulation degree of node x) is defined as follows:

            1. Each edge of the tree has an positive capacity.
            2. The nodes with degree of one in the tree are named terminals.
            3. The flow of each edge can't exceed its capacity.
            4. A(x) is the maximal flow that node x can flow to other terminal nodes.

            Since it may be hard to understand the definition, an example is showed below:


            A(1)=11+5+8=24
            Details: 1->2 11
              1->4->3 5
              1->4->5 8(since 1->4 has capacity of 13)
            A(2)=5+6=11
            Details: 2->1->4->3 5
              2->1->4->5 6
            A(3)=5
            Details: 3->4->5 5
            A(4)=11+5+10=26
            Details: 4->1->2 11
              4->3 5
              4->5 10
            A(5)=10
            Details: 5->4->1->2 10

            The accumulation degree of a tree is the maximal accumulation degree among its nodes. Here your task is to find the accumulation degree of the given trees.

            Input

            The first line of the input is an integer T which indicates the number of test cases. The first line of each test case is a positive integer n. Each of the following n - 1 lines contains three integers x, y, z separated by spaces, representing there is an edge between node x and node y, and the capacity of the edge is z. Nodes are numbered from 1 to n.
            All the elements are nonnegative integers no more than 200000. You may assume that the test data are all tree metrics.

            Output

            For each test case, output the result on a single line.
             

            Sample Input

            1
            5
            1 2 11
            1 4 13
            3 4 5
            4 5 10

            Sample Output

            26

            Source


            這道題的基本思想是樹形DP,如果不能理解的話請試圖把雙向邊看成兩個單向邊,再比劃比劃就出來了。
            當(dāng)然不一定非要以邊做為DP的單元,也可以歸到邊上(如果你有那份心的話)。
            比賽的時候因為數(shù)據(jù)量大而Stack Overflow,一直想寫人工模擬棧,但因為沒寫過,在比賽中寫不出來。

            五一節(jié)虛心的跟alpc62學(xué)習(xí)了怎么寫人工模擬棧,核心思想就是將同一個DFS內(nèi)的不同DFS做個標(biāo)記,這樣在出棧的時候就可以判斷自己所處的位置,也就知道自己該采取什么行動了。
            比如
            void DFS(int x) {
                for(int i = 0; i < head[x].size(); ++i) {
                   DFS(head[x][i]);
                }
            }
            如果把(x, i)這個2元組壓入棧也就知道自己現(xiàn)在所處的地方了。
            如果有更多的內(nèi)部DFS,同樣是加對應(yīng)的標(biāo)記。

            當(dāng)然,BFS也是一種很好的選擇(應(yīng)該說大多數(shù)隊伍會選擇BFS而不是人工模擬棧)

            //Accumulation Degree in BFS

            #include <vector>
            #include <algorithm>
            #include <iostream>
            using namespace std;

            #define Min(a, b) (a<b?a:b)
            #define Max(a, b) (a>b?a:b)

            struct Node
            {
                int x, i, pre;
                Node() {}
                Node(int xx, int ii, int pp) {x=xx, i = ii, pre=pp;}
            };

            struct Edge
            {
                int x, w, dp;
                Edge() {}
                Edge(int xx, int ww, int dd=0) { x=xx,w=ww,dp=dd;}
            };

            const int N = 200010;
            vector<Edge> e[N];
            bool chk[N];
            int n, flow[N];

            void solve() {
                int i, j, k;
                vector<Node> Q;

                fill(chk, chk + n, 0);
                fill(flow, flow + n, 0);

                for(i = 0; i < n && e[i].size()!=1; ++i);
                int st = 0, end = 0;
                chk[i] = 1;
                for(j = 0; j < e[i].size(); ++j) {
                    Q.push_back(Node(i, j, -1));
                    end++;
                    chk[e[i][j].x] = 1;
                }
                while(st < end) {
                    int x = e[Q[st].x][Q[st].i].x, pre = Q[st].pre;
                    for(i = 0; i < e[x].size(); ++i) {
                        if(!chk[e[x][i].x]) {
                            Q.push_back(Node(x, i, st));
                            end++;
                            chk[e[x][i].x] = 1;
                        }
                    }
                    ++st;
                }
                for(i = end-1; i >= 0; --i) {
                    int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
                    if(e[e[x][idx].x].size() == 1) e[x][idx].dp = e[x][idx].w;
                    else e[x][idx].dp = Min(e[x][idx].dp, e[x][idx].w);
                    if(pre == -1) continue;
                    int prex = Q[pre].x, preidx = Q[pre].i;
                    e[prex][preidx].dp += e[x][idx].dp;
                }


                for(i = 0; i < e[Q[0].x].size(); ++i) {
                    flow[Q[0].x] += e[Q[0].x][i].dp;
                }
                for(i = 0; i < end; ++i) {
                    int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
                    int y = e[x][idx].x, xx;
                    for(xx = 0; xx < e[y].size() && e[y][xx].x != x; ++xx);
                    if(pre == -1) {
                        e[y][xx].dp = e[y][xx].w;
                    }
                    else {
                        e[y][xx].dp = Min(e[y][xx].dp, e[y][xx].w);
                    }
                    for(j = 0; j < e[y].size(); ++j) {
                        flow[y] += e[y][j].dp;
                    }
                    for(j = 0; j < e[y].size(); ++j) {
                        int yy = e[y][j].x;
                        if(yy == x) continue;
                        for(k = 0; k < e[yy].size() && e[yy][k].x != y; ++k);
                        e[yy][k].dp = flow[y] - e[y][j].dp;
                    }
                }

                int max = 0;
                for(i = 0; i < n; ++i)
                    max = Max(max, flow[i]);
                printf("%d\n", max);
            }

            int main() {
                int ntc;
                int i;
                int x, y, w;
                scanf("%d", &ntc);
                while(ntc--) {
                    scanf("%d", &n);
                    for(i = 0; i < n; ++i) e[i].clear();
                    for(i = 0; i < n-1; ++i) {
                        scanf("%d %d %d", &x, &y, &w);
                        --x; --y;
                        e[x].push_back(Edge(y, w));
                        e[y].push_back(Edge(x, w));
                    }
                    solve();
                }
                return 0;
            }


            Feedback

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-05-06 14:41 by wlzb
            不錯呀,上原創(chuàng)精華了

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-05-06 18:00 by oyjpart
            哦?

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-05-12 21:15 by alpc55
            太強了,你竟然模擬棧……

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-05-13 22:52 by ecnu_zp
            哦~~
            學(xué)習(xí)學(xué)習(xí)·~

            公網(wǎng)能進你們的oj系統(tǒng)嗎??

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-05-13 22:52 by ecnu_zp
            哦~~
            學(xué)習(xí)學(xué)習(xí)·~

            公網(wǎng)能進你們的oj系統(tǒng)嗎??
            教育網(wǎng)

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-05-13 23:50 by oyjpart
            我們是軍網(wǎng) 外網(wǎng)應(yīng)該不能訪問

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-05-14 17:15 by ecnu_zp
            我還是不太明白啊~
            我想的dp是N^2A的,因為要對所有點執(zhí)行一次~~
            我弱,能不能教我一下啊。

            ecnu_zp@yahoo.cn
            QQ:345717212
            MSN: arena_zp@live.cn

            ^_^

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-05-14 20:08 by oyjpart
            每條邊拆成2條邊 。 然后對每條邊設(shè)一個DP值。
            比如邊A->B. B連接的其他點的集合叫做S(S中去掉A)
            dp[A->B] = Min(Capacity[A->B], 加合(dp[B->Ci]));
            可以通過2次DFS來求出這些DP值。第一次求出一個方向的邊的DP值,再一次求出反向。
            試著畫個圖來理解吧:)

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評論   

            2008-07-26 06:06 by lengbufang
            看看!!
            国产A三级久久精品| 99久久精品费精品国产一区二区| 久久福利片| 尹人香蕉久久99天天拍| 久久婷婷五月综合97色| 久久人人爽人人精品视频| 午夜精品久久久久久中宇| 久久亚洲国产精品一区二区| 婷婷久久精品国产| 麻豆精品久久精品色综合| 久久久无码精品亚洲日韩京东传媒 | 久久无码一区二区三区少妇| 麻豆AV一区二区三区久久| 日日狠狠久久偷偷色综合免费| 久久精品水蜜桃av综合天堂| 中文字幕精品久久| 精品久久久久久久久久中文字幕| 久久精品国产亚洲AV电影| 久久www免费人成看片| 麻豆久久| 午夜精品久久久久9999高清| 久久九九亚洲精品| 国产亚洲综合久久系列| 久久久一本精品99久久精品66| 少妇熟女久久综合网色欲| 久久99久久无码毛片一区二区| 久久99国产精一区二区三区| 久久A级毛片免费观看| 国内精品久久久久影院日本| 欧美丰满熟妇BBB久久久| 色欲综合久久中文字幕网| 亚洲色欲久久久综合网东京热| 久久久久久精品无码人妻| 7777久久久国产精品消防器材| 狠狠色婷婷久久综合频道日韩 | 久久久久亚洲AV成人网| 亚洲国产精品久久66| 国产一区二区精品久久凹凸| 久久99精品国产麻豆婷婷| 一级a性色生活片久久无| 97精品依人久久久大香线蕉97|