• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            SRM387

            Posted on 2008-01-10 17:23 oyjpart 閱讀(1001) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽

            同SRM386,再度只做了第一題。。RATING保持不變。。算了,我就是弱。

            第一題其實相當于把非法的行刪掉并且保持列為1就可以了(去掉一行joker)
            我代碼寫的慢啊。。又是低分。。

            第二題是個DP,本來是不很難想的,感覺還是時間太緊,有點緊張了。。
            小小菜鳥再度100多分收場。。    

               public class Node implements Comparable { 
                    public int x, y;

                    public int compareTo(Object o) {
                        Node no = (Node) o;
                        if (this.x == no.x)
                            return this.y - no.y;
                        return this.x - no.x;
                    }

                    public Node(int x, int y) {
                        this.x = x;
                        this.y = y;
                    }
                }

                public int numberOfSubsets(int[] start, int[] finish) {
                    int n = start.length;
                    Node[] A = new Node[n+2];
                    int[] dp = new int[n+2];
                    for (int i = 0; i < n; ++i) {
                        A[i] = new Node(start[i], finish[i]);
                    }
                    A[n++] = new Node(1000, 1000);
                    A[n++] = new Node(0, 0);
                    Arrays.sort(A);
                    Arrays.fill(dp, 0);
                    dp[0] = 1;
                    int i, j, k;
                    for (i = 1; i < n; ++i) {
                        for (j = 0; j < i; ++j) {
                            if (!(A[i].x <= A[j].y && A[i].y >= A[j].x)) {
                                boolean ok = true;
                                for (k = j + 1; k < i; ++k) {
                                    if (!(A[k].x <= A[i].y && A[k].y >= A[i].x)
                                            && !(A[k].x <= A[j].y && A[k].y >= A[j].x)) {
                                        ok = false;
                                    }
                                }
                                if (ok) 
                                    dp[i] += dp[j];
                            }
                        }
                    }

                    return dp[n-1];
                }

            Analysis提供了一種O(nlogn)的方法,不難,有興趣的可以看看。

            There are several approaches to this problem. Most of them use dynamic programming, but some optimized brute-force solutions may also pass system test. Here will be explained an O(n^2) algorithm and it can be relatively easily modified to have O(n * lg(n)) complexity, where n is the number of intervals.

            First of all, let's sort intervals by their finish points. Then we'll define two functions, partial(x) and total(x). The total(x) returns the number of valid subsets of the set formed by first x + 1 intervals. The partial(x) returns the number of valid subsets, which contains x-th interval, of the set formed by the first x + 1 intervals. The solution would be total(n), where n is the number of intervals. Now, let's see how to calculate each of those two functions.

            logN來自二分查找i前面的最后一個不相交的線段。

            第三題也不是很難,但是,比如說我這種第二題都沒出的人就不用說了。。
            #pragma warning ( disable : 4786 )

            #include <vector>
            #include <list>
            #include <map>
            #include <set>
            #include <deque>
            #include <stack>
            #include <bitset>
            #include <queue>
            #include <algorithm>
            #include <functional>
            #include <numeric>
            #include <utility>
            #include <sstream>
            #include <iostream>
            #include <iomanip>
            #include <cstdio>
            #include <cmath>
            #include <cstdlib>
            #include <ctime>

            using namespace std;
            #define sz(x) ((int)(x).size())
            #define Max(a, b) ((a) > (b) ? (a) : (b))
            #define Min(a, b) ((a) < (b) ? (a) : (b))
            #define two(x) (1<<(x))
            #define contains(S, x) (((S)&two(x)) != 0)
            typedef long long LL;
            const int MAXINT = 1000000000;
            const double INF = 10e300;
            const double EPS = 1e-7;

            inline int dblcmp(double a, double b) { if(fabs(a-b) < EPS) return 0; if(a < b) return -1;  return 1; }  
            inline int bitcnt(int x) { int cnt = 0; while(x != 0) { cnt++; x &= (x-1); } return cnt; }
            template<typename T> string toString(const T& s) { ostringstream os; os << s; return s.str();}

            const int MOD = 1000000007;

            LL P[2600];
            LL power(LL a, LL b) { //actually returns a integer in [0, MOD)
             if(b == 0) return 1;
             if(b % 2 == 0) {
              LL t = power(a, b>>1);
              return t*t%MOD;
             }
             else
              return a%MOD*power(a, b-1)%MOD;
            }

            LL cal(int a0, LL q, LL times) {
             if(times == 0) return 0;
             LL t = cal(a0, q, times>>1);
             t *= (1+power(q, times>>1));
             t %= MOD;
             if(!(times & 1)) return t;
             return (t*q+a0)%MOD;
            }

            class StrangeArray
            {
            public:
             int calculateSum(vector <int> A, vector <int> B, string sN)
             {
              LL N;
              sscanf(sN.c_str(), "%lld", &N);
              int i, cycle = sz(A)*sz(B);
              for(i = 0; i < cycle; ++i) {
               P[i] = power(A[i%sz(A)], B[i%sz(B)] + i/sz(B));
              }

              LL ans = 0;
              for(i = 0; i < cycle; ++i) {
               LL times = (N-i-1+cycle)/cycle;
               LL q = power(A[i%sz(A)], sz(A));
               ans += cal(P[i], q, times);
               ans %= MOD;
              }
              return (int)ans;
             }
             
             
            };

             

            // Powered by FileEdit
            // Powered by TZTester 1.01 [25-Feb-2003]
            // Powered by CodeProcessor

            无码人妻久久一区二区三区免费 | 久久99精品国产麻豆宅宅 | 久久久精品人妻一区二区三区四| 国产精品成人99久久久久 | 亚洲AV无码久久精品蜜桃| 无码人妻少妇久久中文字幕 | www.久久精品| 97精品国产91久久久久久| 久久超乳爆乳中文字幕| 久久精品一本到99热免费| 色欲久久久天天天综合网| 亚洲午夜久久久影院| 国内高清久久久久久| 伊人色综合久久天天人手人婷 | 亚洲另类欧美综合久久图片区| 蜜桃麻豆www久久国产精品| 久久久这里有精品中文字幕| 久久亚洲色一区二区三区| 亚洲精品无码久久不卡| 久久香蕉超碰97国产精品| 精品永久久福利一区二区 | 99久久99久久精品国产片果冻| 久久久久久久精品妇女99| 久久天天躁狠狠躁夜夜avapp| 亚洲狠狠婷婷综合久久蜜芽| 久久国产高潮流白浆免费观看| 国产精品久久久久久福利漫画| 国产免费久久精品99久久| 青青草国产97免久久费观看| 人妻无码αv中文字幕久久琪琪布| 麻豆久久久9性大片| 2021久久国自产拍精品| 久久久久久久综合日本| 亚洲AV日韩精品久久久久久| 伊人久久大香线蕉影院95| 久久久久se色偷偷亚洲精品av| 91精品国产综合久久久久久| 蜜臀久久99精品久久久久久| 久久久久综合网久久| 久久久久se色偷偷亚洲精品av| 国产成人香蕉久久久久|