• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            SRM387

            Posted on 2008-01-10 17:23 oyjpart 閱讀(1004) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽

            同SRM386,再度只做了第一題。。RATING保持不變。。算了,我就是弱。

            第一題其實相當于把非法的行刪掉并且保持列為1就可以了(去掉一行joker)
            我代碼寫的慢啊。。又是低分。。

            第二題是個DP,本來是不很難想的,感覺還是時間太緊,有點緊張了。。
            小小菜鳥再度100多分收場。。    

               public class Node implements Comparable { 
                    public int x, y;

                    public int compareTo(Object o) {
                        Node no = (Node) o;
                        if (this.x == no.x)
                            return this.y - no.y;
                        return this.x - no.x;
                    }

                    public Node(int x, int y) {
                        this.x = x;
                        this.y = y;
                    }
                }

                public int numberOfSubsets(int[] start, int[] finish) {
                    int n = start.length;
                    Node[] A = new Node[n+2];
                    int[] dp = new int[n+2];
                    for (int i = 0; i < n; ++i) {
                        A[i] = new Node(start[i], finish[i]);
                    }
                    A[n++] = new Node(1000, 1000);
                    A[n++] = new Node(0, 0);
                    Arrays.sort(A);
                    Arrays.fill(dp, 0);
                    dp[0] = 1;
                    int i, j, k;
                    for (i = 1; i < n; ++i) {
                        for (j = 0; j < i; ++j) {
                            if (!(A[i].x <= A[j].y && A[i].y >= A[j].x)) {
                                boolean ok = true;
                                for (k = j + 1; k < i; ++k) {
                                    if (!(A[k].x <= A[i].y && A[k].y >= A[i].x)
                                            && !(A[k].x <= A[j].y && A[k].y >= A[j].x)) {
                                        ok = false;
                                    }
                                }
                                if (ok) 
                                    dp[i] += dp[j];
                            }
                        }
                    }

                    return dp[n-1];
                }

            Analysis提供了一種O(nlogn)的方法,不難,有興趣的可以看看。

            There are several approaches to this problem. Most of them use dynamic programming, but some optimized brute-force solutions may also pass system test. Here will be explained an O(n^2) algorithm and it can be relatively easily modified to have O(n * lg(n)) complexity, where n is the number of intervals.

            First of all, let's sort intervals by their finish points. Then we'll define two functions, partial(x) and total(x). The total(x) returns the number of valid subsets of the set formed by first x + 1 intervals. The partial(x) returns the number of valid subsets, which contains x-th interval, of the set formed by the first x + 1 intervals. The solution would be total(n), where n is the number of intervals. Now, let's see how to calculate each of those two functions.

            logN來自二分查找i前面的最后一個不相交的線段。

            第三題也不是很難,但是,比如說我這種第二題都沒出的人就不用說了。。
            #pragma warning ( disable : 4786 )

            #include <vector>
            #include <list>
            #include <map>
            #include <set>
            #include <deque>
            #include <stack>
            #include <bitset>
            #include <queue>
            #include <algorithm>
            #include <functional>
            #include <numeric>
            #include <utility>
            #include <sstream>
            #include <iostream>
            #include <iomanip>
            #include <cstdio>
            #include <cmath>
            #include <cstdlib>
            #include <ctime>

            using namespace std;
            #define sz(x) ((int)(x).size())
            #define Max(a, b) ((a) > (b) ? (a) : (b))
            #define Min(a, b) ((a) < (b) ? (a) : (b))
            #define two(x) (1<<(x))
            #define contains(S, x) (((S)&two(x)) != 0)
            typedef long long LL;
            const int MAXINT = 1000000000;
            const double INF = 10e300;
            const double EPS = 1e-7;

            inline int dblcmp(double a, double b) { if(fabs(a-b) < EPS) return 0; if(a < b) return -1;  return 1; }  
            inline int bitcnt(int x) { int cnt = 0; while(x != 0) { cnt++; x &= (x-1); } return cnt; }
            template<typename T> string toString(const T& s) { ostringstream os; os << s; return s.str();}

            const int MOD = 1000000007;

            LL P[2600];
            LL power(LL a, LL b) { //actually returns a integer in [0, MOD)
             if(b == 0) return 1;
             if(b % 2 == 0) {
              LL t = power(a, b>>1);
              return t*t%MOD;
             }
             else
              return a%MOD*power(a, b-1)%MOD;
            }

            LL cal(int a0, LL q, LL times) {
             if(times == 0) return 0;
             LL t = cal(a0, q, times>>1);
             t *= (1+power(q, times>>1));
             t %= MOD;
             if(!(times & 1)) return t;
             return (t*q+a0)%MOD;
            }

            class StrangeArray
            {
            public:
             int calculateSum(vector <int> A, vector <int> B, string sN)
             {
              LL N;
              sscanf(sN.c_str(), "%lld", &N);
              int i, cycle = sz(A)*sz(B);
              for(i = 0; i < cycle; ++i) {
               P[i] = power(A[i%sz(A)], B[i%sz(B)] + i/sz(B));
              }

              LL ans = 0;
              for(i = 0; i < cycle; ++i) {
               LL times = (N-i-1+cycle)/cycle;
               LL q = power(A[i%sz(A)], sz(A));
               ans += cal(P[i], q, times);
               ans %= MOD;
              }
              return (int)ans;
             }
             
             
            };

             

            // Powered by FileEdit
            // Powered by TZTester 1.01 [25-Feb-2003]
            // Powered by CodeProcessor

            久久久久久国产a免费观看不卡| 精品久久一区二区三区| 久久精品?ⅴ无码中文字幕| 久久成人18免费网站| 久久天天躁狠狠躁夜夜躁2014| 久久精品国产久精国产思思| 久久精品国产只有精品66 | 狠狠久久综合| 99国产欧美久久久精品蜜芽| 国内精品久久久久久久影视麻豆| 成人久久免费网站| 日本精品久久久久久久久免费| 国产精品久久久久aaaa| 久久这里有精品视频| 久久精品国产99国产精品澳门| 精品国产日韩久久亚洲 | 久久亚洲国产成人精品无码区| 伊人久久大香线蕉综合Av| 久久久无码精品午夜| 韩国无遮挡三级久久| 亚洲精品tv久久久久久久久 | 欧美一级久久久久久久大| 精品无码久久久久久午夜| 久久久无码精品亚洲日韩蜜臀浪潮| 青青青青久久精品国产| 国产精品一区二区久久精品| 久久99久久99精品免视看动漫| 久久久久久久亚洲精品| 久久亚洲欧美日本精品| 国产美女久久精品香蕉69| 亚洲综合伊人久久大杳蕉| 99蜜桃臀久久久欧美精品网站| 国产精品久久新婚兰兰| 伊人久久大香线蕉综合热线| 日韩精品无码久久一区二区三| 日韩AV毛片精品久久久| 亚洲午夜福利精品久久| 一本一本久久A久久综合精品| 亚洲国产一成人久久精品| 久久天堂AV综合合色蜜桃网| …久久精品99久久香蕉国产|