• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2007年9月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            30123456

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 219046
            • 排名 - 118

            最新評論

            閱讀排行榜

            評論排行榜

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include? < iostream >
            using ? namespace ?std;
            const ? int ?MAXN? = ? 200001 ;

            class ?UFset
            {
            public :
            ????
            int ?parent[MAXN];
            ????UFset();
            ????
            int ?Find( int );
            ????
            void ?Union( int ,? int );
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            - 1 ,? sizeof (parent));
            }


            int ?UFset::Find( int ?x)
            {
            ????
            if ?(parent[x]? < ? 0 )
            ????????
            return ?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            = ?Find(parent[x]);
            ????????
            return ?parent[x];
            ????}
            // ?壓縮路徑
            }


            void ?UFset::Union( int ?x,? int ?y)
            {
            ????
            int ?pX? = ?Find(x);
            ????
            int ?pY? = ?Find(y);
            ????
            int ?tmp;
            ????
            if ?(pX? != ?pY)
            ????
            {
            ????????tmp?
            = ?parent[pX]? + ?parent[pY];? // ?加權合并
            ???????? if ?(parent[pX]? > ?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            = ?pY;
            ????????????parent[pY]?
            = ?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            = ?pX;
            ????????????parent[pX]?
            = ?tmp;
            ????????}

            ????}

            }


            int ?f[(MAXN + 1 ) * 3 ]? = ? { 0 } ;
            int ?n,?m;

            void ?initTree()
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]?
            = ?n;
            ????????c?
            = ?c? * ? 2 ;
            ????????r?
            = ?(l? + ?r)? / ? 2 ;
            ????}

            ????f[c]?
            = ?n; // 葉子初始化
            }


            void ?insertTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            ++ ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            ++ ; // 葉子增加1
            }


            void ?delTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            -- ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            -- ; // 葉子減少1
            }


            int ?searchTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????mid?
            = ?(l? + ?r)? / ? 2 ;
            ????????
            if ?(k? <= ?f[ 2 * c + 1 ])
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -= ?f[ 2 * c + 1 ];
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????
            return ?l;
            }


            int ?main()
            {
            ????
            int ?i,?j;
            ????
            int ?x,?y;
            ????
            int ?k;
            ????
            int ?l,?r;
            ????
            int ?cmd;
            ????
            int ?px,?py;
            ????
            int ?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            " %d%d " ,? & n,? & m);
            ????initTree();
            ????
            for ?(i = 0 ;?i < m;?i ++ )
            ????
            {
            ????????scanf(
            " %d " ,? & cmd);
            ????????
            if ?(cmd? == ? 0 )
            ????????
            {
            ????????????scanf(
            " %d%d " ,? & x,? & y);
            ????????????px?
            = ?UFS.Find(x);
            ????????????py?
            = ?UFS.Find(y);
            ????????????
            if ?(px? != ?py)
            ????????????
            {
            ????????????????tx?
            = ? - UFS.parent[px];
            ????????????????ty?
            = ? - UFS.parent[py];
            ????????????????tz?
            = ?tx? + ?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            " %d " ,? & k);
            ????????????printf(
            " %d\n " ,?searchTree(k));
            ????????}

            ????}

            ????
            return ? 0 ;
            }
            posted on 2006-09-06 13:28 閱讀(820) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-22 13:24 A3
            可否講解一下線段樹部分  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-22 17:47 
            把區間劃出來, 節點(非葉子), 表示該區間里面含有多少個元素。
            如果 n = 10;
            而集合大小分別是 1, 1, 2, 6;

            則 區間(1-10) = 4; 區間(1-5) = 3;

            就這樣用線段樹動態維護每次集合合并后的集合大小。

            初始化(1-10) = 10;
            因為開始時, 集合大小為1, 1, 1, 1, 1, 1, 1, 1, 1, 1  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-24 19:53 Optimistic
            偶的第一次呢 靜待。。。  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-24 22:23 
            +U ^_^  回復  更多評論
              
            久久精品成人| 看全色黄大色大片免费久久久| 亚洲精品乱码久久久久66| 久久99热只有频精品8| 久久e热在这里只有国产中文精品99| 久久综合精品国产一区二区三区 | 欧美一区二区精品久久| 久久国产成人| 精品综合久久久久久97超人| 午夜精品久久久久久影视777 | 韩国三级中文字幕hd久久精品| 久久久久久国产a免费观看黄色大片 | 国产精品久久永久免费| 香蕉久久永久视频| 777久久精品一区二区三区无码| 久久大香萑太香蕉av| 人人狠狠综合久久亚洲88| 久久久久亚洲精品天堂| 久久99热这里只有精品66| 久久国产三级无码一区二区| 国产精品久久久亚洲| 亚洲色大成网站www久久九| 久久综合伊人77777| 91亚洲国产成人久久精品| 九九精品99久久久香蕉| 久久亚洲欧美国产精品| 天堂久久天堂AV色综合| 久久久噜噜噜久久中文字幕色伊伊 | 欧美熟妇另类久久久久久不卡| 亚洲综合久久夜AV | 久久精品成人| 热久久国产欧美一区二区精品| 久久精品国产只有精品66| 久久人人爽人人爽人人片AV麻豆| 亚洲国产成人久久精品影视| 国产一级做a爰片久久毛片| 国产欧美一区二区久久| 久久久久久a亚洲欧洲aⅴ| 伊人久久大香线蕉影院95| 久久精品不卡| 国产成年无码久久久免费|