• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2006年9月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217828
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include? < iostream >
            using ? namespace ?std;
            const ? int ?MAXN? = ? 200001 ;

            class ?UFset
            {
            public :
            ????
            int ?parent[MAXN];
            ????UFset();
            ????
            int ?Find( int );
            ????
            void ?Union( int ,? int );
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            - 1 ,? sizeof (parent));
            }


            int ?UFset::Find( int ?x)
            {
            ????
            if ?(parent[x]? < ? 0 )
            ????????
            return ?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            = ?Find(parent[x]);
            ????????
            return ?parent[x];
            ????}
            // ?壓縮路徑
            }


            void ?UFset::Union( int ?x,? int ?y)
            {
            ????
            int ?pX? = ?Find(x);
            ????
            int ?pY? = ?Find(y);
            ????
            int ?tmp;
            ????
            if ?(pX? != ?pY)
            ????
            {
            ????????tmp?
            = ?parent[pX]? + ?parent[pY];? // ?加權(quán)合并
            ???????? if ?(parent[pX]? > ?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            = ?pY;
            ????????????parent[pY]?
            = ?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            = ?pX;
            ????????????parent[pX]?
            = ?tmp;
            ????????}

            ????}

            }


            int ?f[(MAXN + 1 ) * 3 ]? = ? { 0 } ;
            int ?n,?m;

            void ?initTree()
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]?
            = ?n;
            ????????c?
            = ?c? * ? 2 ;
            ????????r?
            = ?(l? + ?r)? / ? 2 ;
            ????}

            ????f[c]?
            = ?n; // 葉子初始化
            }


            void ?insertTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            ++ ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            ++ ; // 葉子增加1
            }


            void ?delTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            -- ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            -- ; // 葉子減少1
            }


            int ?searchTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????mid?
            = ?(l? + ?r)? / ? 2 ;
            ????????
            if ?(k? <= ?f[ 2 * c + 1 ])
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -= ?f[ 2 * c + 1 ];
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????
            return ?l;
            }


            int ?main()
            {
            ????
            int ?i,?j;
            ????
            int ?x,?y;
            ????
            int ?k;
            ????
            int ?l,?r;
            ????
            int ?cmd;
            ????
            int ?px,?py;
            ????
            int ?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            " %d%d " ,? & n,? & m);
            ????initTree();
            ????
            for ?(i = 0 ;?i < m;?i ++ )
            ????
            {
            ????????scanf(
            " %d " ,? & cmd);
            ????????
            if ?(cmd? == ? 0 )
            ????????
            {
            ????????????scanf(
            " %d%d " ,? & x,? & y);
            ????????????px?
            = ?UFS.Find(x);
            ????????????py?
            = ?UFS.Find(y);
            ????????????
            if ?(px? != ?py)
            ????????????
            {
            ????????????????tx?
            = ? - UFS.parent[px];
            ????????????????ty?
            = ? - UFS.parent[py];
            ????????????????tz?
            = ?tx? + ?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            " %d " ,? & k);
            ????????????printf(
            " %d\n " ,?searchTree(k));
            ????????}

            ????}

            ????
            return ? 0 ;
            }
            posted on 2006-09-06 13:28 閱讀(815) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: pku2985 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解題, 并查集+線段樹 2006-09-22 13:24 A3
            可否講解一下線段樹部分  回復(fù)  更多評論
              
            # re: pku2985 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解題, 并查集+線段樹 2006-09-22 17:47 
            把區(qū)間劃出來, 節(jié)點(非葉子), 表示該區(qū)間里面含有多少個元素。
            如果 n = 10;
            而集合大小分別是 1, 1, 2, 6;

            則 區(qū)間(1-10) = 4; 區(qū)間(1-5) = 3;

            就這樣用線段樹動態(tài)維護每次集合合并后的集合大小。

            初始化(1-10) = 10;
            因為開始時, 集合大小為1, 1, 1, 1, 1, 1, 1, 1, 1, 1  回復(fù)  更多評論
              
            # re: pku2985 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解題, 并查集+線段樹 2006-09-24 19:53 Optimistic
            偶的第一次呢 靜待。。。  回復(fù)  更多評論
              
            # re: pku2985 第一次用兩種數(shù)據(jù)結(jié)構(gòu)解題, 并查集+線段樹 2006-09-24 22:23 
            +U ^_^  回復(fù)  更多評論
              
            日韩一区二区久久久久久 | 亚洲人成网站999久久久综合| 91精品国产高清91久久久久久| 五月丁香综合激情六月久久| 伊人久久大香线蕉av不变影院| 亚洲va国产va天堂va久久| 久久免费视频网站| 午夜精品久久久内射近拍高清| 久久久久亚洲AV无码专区首JN | 精品国产乱码久久久久软件| 日产精品99久久久久久| 久久国产免费直播| 久久精品国产一区二区三区不卡 | 亚洲成色WWW久久网站| 青青青青久久精品国产h| 久久只这里是精品66| 成人综合伊人五月婷久久| 久久精品国产欧美日韩99热| 国产成人精品久久二区二区| 麻豆av久久av盛宴av| 国产成人精品免费久久久久| 亚洲天堂久久久| 日本精品久久久久中文字幕8| 中文字幕日本人妻久久久免费| 久久久精品免费国产四虎| 漂亮人妻被中出中文字幕久久| 久久99久久99小草精品免视看| 中文字幕人妻色偷偷久久| 久久久久亚洲AV成人网人人网站 | 综合久久国产九一剧情麻豆| 伊人久久大香线蕉综合5g | 一本色道久久88精品综合| 久久国产高清一区二区三区| 久久国产精品久久精品国产| 久久99精品久久只有精品| 久久久久久久人妻无码中文字幕爆| 久久久久亚洲AV无码专区首JN| 99久久精品免费看国产一区二区三区| 久久精品免费大片国产大片| AA级片免费看视频久久| 国产成人精品久久|