• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2006年3月>
            2627281234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊(cè)

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217774
            • 排名 - 117

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            Dominoes
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:1022 Accepted:333

            Description
            A domino is a flat, thumbsized tile, the face of which is divided into two squares, each left blank or bearing from one to six dots. There is a row of dominoes laid out on a table:


            The number of dots in the top line is 6+1+1+1=9 and the number of dots in the bottom line is 1+5+3+2=11. The gap between the top line and the bottom line is 2. The gap is the absolute value of difference between two sums.

            Each domino can be turned by 180 degrees keeping its face always upwards.

            What is the smallest number of turns needed to minimise the gap between the top line and the bottom line?

            For the figure above it is sufficient to turn the last domino in the row in order to decrease the gap to 0. In this case the answer is 1.
            Write a program that: computes the smallest number of turns needed to minimise the gap between the top line and the bottom line.

            Input
            The first line of the input contains an integer n, 1 <= n <= 1000. This is the number of dominoes laid out on the table.

            Each of the next n lines contains two integers a, b separated by a single space, 0 <= a, b <= 6. The integers a and b written in the line i + 1 of the input file, 1 <= i <= 1000, are the numbers of dots on the i-th domino in the row, respectively, in the top line and in the bottom one.

            Output
            Output the smallest number of turns needed to minimise the gap between the top line and the bottom line.

            Sample Input

            4
            6 1
            1 5
            1 3
            1 2
            

            Sample Output

            1
            

            Source
            CEOI 1997

            #include? < iostream >
            using ? namespace ?std;

            const ? int ?MAXN? = ? 8000 ;
            const ? int ?INF? = ? 1 ? << ? 28 ;

            struct ?DATA? {
            ????
            int ?da[MAXN];
            ????
            int ?dx;
            ????
            int ?q;
            }
            ;

            DATA?dp[
            2 * MAXN];
            bool ?f[ 2 * MAXN];
            int ?queue[MAXN],?front,?rear;
            int ?main()
            {
            ????
            int ?n;
            ????
            int ?a[MAXN],?x,?y;
            ????
            int ?i,?j,?k,?w,?l;
            ????
            int ?d? = ? 0 ;
            ????
            int ?ans? = ?INF;
            ????scanf(
            " %d " ,? & n);
            ????
            for ?(i = 0 ;?i < n;?i ++ )? {
            ????????scanf(
            " %d%d " ,? & x,? & y);
            ????????a[i]?
            = ?x? - ?y;
            ????????d?
            += ?a[i];
            ????}

            ????memset(f,?
            false ,? sizeof (f));
            ????dp[d
            + 7500 ].dx? = ?d;?dp[d + 7500 ].q? = ? 0 ;?f[d + 7500 ]? = ? true ;
            ????
            for ?(i = 0 ;?i < n;?i ++ )?dp[d + 7500 ].da[i]? = ?a[i];
            ????front?
            = ? 0 ;?rear? = ? 0 ;?w? = ? 0 ;
            ????
            do ? {
            ????????
            for ?(i = 0 ;?i < n;?i ++ )? {
            ????????????j?
            = ?dp[d + 7500 ].da[i];
            ????????????k?
            = ?d?? - ?j? * ? 2 ;
            ????????????
            if ?( ! f[k + 7500 ]? || ?dp[k + 7500 ].q? > ?w? + ? 1 )? {
            ????????????????
            if ?(k? == ? 0 )? {
            ????????????????????printf(
            " %d\n " ,?w? + ? 1 );
            ????????????????????system(
            " pause " );
            ????????????????????
            return ? 0 ;
            ????????????????}

            ????????????????f[k
            + 7500 ]? = ? true ;
            ????????????????queue[rear
            ++ ]? = ?k;
            ????????????????dp[k
            + 7500 ].dx? = ?k;
            ????????????????dp[k
            + 7500 ].q? = ?w? + ? 1 ;
            ????????????????
            for ?(l = 0 ;?l < n;?l ++ )?dp[k + 7500 ].da[l]? = ?dp[d + 7500 ].da[l];
            ????????????????dp[k
            + 7500 ].da[i]? = ? - dp[d + 7500 ].da[i];
            ????????????}

            ????????}

            ????????d?
            = ?queue[front ++ ];
            ????????w?
            = ?dp[d + 7500 ].q;
            ????}
            ? while ?(front? <= ?rear);??
            ????j?
            = ? 7500 ;
            ????
            bool ?isFind? = ? false ;
            ????
            for ?(i = 0 ;?i < 7500 ;?i ++ )? {
            ????????
            if ?(f[j + i])? {
            ????????????isFind?
            = ? true ;
            ????????????
            if ?(ans? > ?dp[j + i].q)?ans? = ?dp[j + i].q;
            ????????}

            ????????
            if ?(f[j - i])? {
            ????????????isFind?
            = ? true ;
            ????????????
            if ?(ans? > ?dp[j - i].q)?ans? = ?dp[j - i].q;
            ????????}

            ????????
            if ?(isFind)? break ;
            ????}

            ????printf(
            " %d\n " ,?ans);
            ????system(
            " pause " );
            ????
            return ? 0 ;
            }

            posted on 2006-10-29 20:42 閱讀(808) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM題目
            久久高清一级毛片| 99精品国产在热久久无毒不卡| 久久精品一区二区国产| 久久国产精品成人片免费| 免费精品99久久国产综合精品 | 国产精品成人无码久久久久久| 久久精品视频网| AV无码久久久久不卡蜜桃| 久久精品国产免费一区| 久久亚洲中文字幕精品一区| 天堂久久天堂AV色综合| 久久久青草青青国产亚洲免观| 97精品伊人久久久大香线蕉 | 亚洲&#228;v永久无码精品天堂久久| 三级三级久久三级久久 | 亚洲精品乱码久久久久久蜜桃图片 | 99久久99久久精品免费看蜜桃| 久久影院久久香蕉国产线看观看| 99久久精品国产一区二区| 色偷偷888欧美精品久久久| 伊人久久大香线焦AV综合影院| 久久er国产精品免费观看8| 狠狠色丁香久久婷婷综| 2021国产精品久久精品| 久久综合给合综合久久| 国产精品伦理久久久久久| 国产精品久久久久影院嫩草| 亚洲AV日韩AV天堂久久| 亚洲精品成人久久久| 久久精品免费大片国产大片| 午夜不卡888久久| 久久福利青草精品资源站免费| 亚洲色大成网站WWW久久九九| 四虎久久影院| 精品久久久久久国产| 欧美粉嫩小泬久久久久久久| 久久久噜噜噜久久| 亚洲国产天堂久久综合| 亚洲成av人片不卡无码久久| 午夜精品久久久久久影视riav| 国产伊人久久|