• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2008年4月>
            303112345
            6789101112
            13141516171819
            20212223242526
            27282930123
            45678910

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217940
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            Dominoes
            Time Limit:1000MS? Memory Limit:65536K
            Total Submit:1022 Accepted:333

            Description
            A domino is a flat, thumbsized tile, the face of which is divided into two squares, each left blank or bearing from one to six dots. There is a row of dominoes laid out on a table:


            The number of dots in the top line is 6+1+1+1=9 and the number of dots in the bottom line is 1+5+3+2=11. The gap between the top line and the bottom line is 2. The gap is the absolute value of difference between two sums.

            Each domino can be turned by 180 degrees keeping its face always upwards.

            What is the smallest number of turns needed to minimise the gap between the top line and the bottom line?

            For the figure above it is sufficient to turn the last domino in the row in order to decrease the gap to 0. In this case the answer is 1.
            Write a program that: computes the smallest number of turns needed to minimise the gap between the top line and the bottom line.

            Input
            The first line of the input contains an integer n, 1 <= n <= 1000. This is the number of dominoes laid out on the table.

            Each of the next n lines contains two integers a, b separated by a single space, 0 <= a, b <= 6. The integers a and b written in the line i + 1 of the input file, 1 <= i <= 1000, are the numbers of dots on the i-th domino in the row, respectively, in the top line and in the bottom one.

            Output
            Output the smallest number of turns needed to minimise the gap between the top line and the bottom line.

            Sample Input

            4
            6 1
            1 5
            1 3
            1 2
            

            Sample Output

            1
            

            Source
            CEOI 1997

            #include? < iostream >
            using ? namespace ?std;

            const ? int ?MAXN? = ? 8000 ;
            const ? int ?INF? = ? 1 ? << ? 28 ;

            struct ?DATA? {
            ????
            int ?da[MAXN];
            ????
            int ?dx;
            ????
            int ?q;
            }
            ;

            DATA?dp[
            2 * MAXN];
            bool ?f[ 2 * MAXN];
            int ?queue[MAXN],?front,?rear;
            int ?main()
            {
            ????
            int ?n;
            ????
            int ?a[MAXN],?x,?y;
            ????
            int ?i,?j,?k,?w,?l;
            ????
            int ?d? = ? 0 ;
            ????
            int ?ans? = ?INF;
            ????scanf(
            " %d " ,? & n);
            ????
            for ?(i = 0 ;?i < n;?i ++ )? {
            ????????scanf(
            " %d%d " ,? & x,? & y);
            ????????a[i]?
            = ?x? - ?y;
            ????????d?
            += ?a[i];
            ????}

            ????memset(f,?
            false ,? sizeof (f));
            ????dp[d
            + 7500 ].dx? = ?d;?dp[d + 7500 ].q? = ? 0 ;?f[d + 7500 ]? = ? true ;
            ????
            for ?(i = 0 ;?i < n;?i ++ )?dp[d + 7500 ].da[i]? = ?a[i];
            ????front?
            = ? 0 ;?rear? = ? 0 ;?w? = ? 0 ;
            ????
            do ? {
            ????????
            for ?(i = 0 ;?i < n;?i ++ )? {
            ????????????j?
            = ?dp[d + 7500 ].da[i];
            ????????????k?
            = ?d?? - ?j? * ? 2 ;
            ????????????
            if ?( ! f[k + 7500 ]? || ?dp[k + 7500 ].q? > ?w? + ? 1 )? {
            ????????????????
            if ?(k? == ? 0 )? {
            ????????????????????printf(
            " %d\n " ,?w? + ? 1 );
            ????????????????????system(
            " pause " );
            ????????????????????
            return ? 0 ;
            ????????????????}

            ????????????????f[k
            + 7500 ]? = ? true ;
            ????????????????queue[rear
            ++ ]? = ?k;
            ????????????????dp[k
            + 7500 ].dx? = ?k;
            ????????????????dp[k
            + 7500 ].q? = ?w? + ? 1 ;
            ????????????????
            for ?(l = 0 ;?l < n;?l ++ )?dp[k + 7500 ].da[l]? = ?dp[d + 7500 ].da[l];
            ????????????????dp[k
            + 7500 ].da[i]? = ? - dp[d + 7500 ].da[i];
            ????????????}

            ????????}

            ????????d?
            = ?queue[front ++ ];
            ????????w?
            = ?dp[d + 7500 ].q;
            ????}
            ? while ?(front? <= ?rear);??
            ????j?
            = ? 7500 ;
            ????
            bool ?isFind? = ? false ;
            ????
            for ?(i = 0 ;?i < 7500 ;?i ++ )? {
            ????????
            if ?(f[j + i])? {
            ????????????isFind?
            = ? true ;
            ????????????
            if ?(ans? > ?dp[j + i].q)?ans? = ?dp[j + i].q;
            ????????}

            ????????
            if ?(f[j - i])? {
            ????????????isFind?
            = ? true ;
            ????????????
            if ?(ans? > ?dp[j - i].q)?ans? = ?dp[j - i].q;
            ????????}

            ????????
            if ?(isFind)? break ;
            ????}

            ????printf(
            " %d\n " ,?ans);
            ????system(
            " pause " );
            ????
            return ? 0 ;
            }

            posted on 2006-10-29 20:42 閱讀(808) 評論(0)  編輯 收藏 引用 所屬分類: ACM題目
            国产 亚洲 欧美 另类 久久| 国产一级做a爰片久久毛片| 狠狠色丁香婷婷久久综合| 中文字幕无码免费久久| 久久婷婷五月综合97色一本一本| 青青草国产成人久久91网| 国产精品久久久久久久app| 久久久久亚洲精品无码蜜桃 | 亚洲国产婷婷香蕉久久久久久| 久久久国产打桩机| 国产精品久久久99| 久久国产色AV免费观看| 久久久这里有精品| 久久综合九色欧美综合狠狠| 久久中文骚妇内射| 亚洲国产精品成人久久蜜臀 | 99久久精品影院老鸭窝| 久久天天躁夜夜躁狠狠| 久久精品二区| 久久99精品久久久久久齐齐| 国产精品一区二区久久| 久久国产精品无码一区二区三区 | 久久久久久久久无码精品亚洲日韩 | 国产精品久久波多野结衣| 亚洲国产精品18久久久久久| 欧美午夜精品久久久久久浪潮| 一级做a爰片久久毛片人呢| 好久久免费视频高清| 久久91精品国产91久久户| www性久久久com| 久久国产成人精品麻豆| aaa级精品久久久国产片| 99麻豆久久久国产精品免费| 国产精品美女久久久久| 99麻豆久久久国产精品免费 | 人妻中文久久久久| 一本大道久久东京热无码AV | 久久婷婷五月综合色奶水99啪| 99久久精品国产一区二区| 久久精品无码专区免费东京热| 麻豆成人久久精品二区三区免费|