• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            隨筆 - 87  文章 - 279  trackbacks - 0
            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            潛心看書研究!

            常用鏈接

            留言簿(19)

            隨筆分類(81)

            文章分類(89)

            相冊

            ACM OJ

            My friends

            搜索

            •  

            積分與排名

            • 積分 - 217836
            • 排名 - 117

            最新評論

            閱讀排行榜

            評論排行榜

            The k-th Largest Group
            Time Limit:2000MS? Memory Limit:131072K
            Total Submit:1222 Accepted:290

            Description

            Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

            Input

            1st line: Two numbers N and M (1 ≤ N, M ≤ 200,000), namely the number of cats and the number of operations.

            2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ i, jn) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

            Output

            For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

            Sample Input

            10 10
            0 1 2
            1 4
            0 3 4
            1 2
            0 5 6
            1 1
            0 7 8
            1 1
            0 9 10
            1 1

            Sample Output

            1
            2
            2
            2
            2

            Hint

            When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

            Source
            POJ Monthly--2006.08.27, zcgzcgzcg

            #include? < iostream >
            using ? namespace ?std;
            const ? int ?MAXN? = ? 200001 ;

            class ?UFset
            {
            public :
            ????
            int ?parent[MAXN];
            ????UFset();
            ????
            int ?Find( int );
            ????
            void ?Union( int ,? int );
            }
            ;

            UFset::UFset()
            {
            ????memset(parent,?
            - 1 ,? sizeof (parent));
            }


            int ?UFset::Find( int ?x)
            {
            ????
            if ?(parent[x]? < ? 0 )
            ????????
            return ?x;
            ????
            else
            ????
            {
            ????????parent[x]?
            = ?Find(parent[x]);
            ????????
            return ?parent[x];
            ????}
            // ?壓縮路徑
            }


            void ?UFset::Union( int ?x,? int ?y)
            {
            ????
            int ?pX? = ?Find(x);
            ????
            int ?pY? = ?Find(y);
            ????
            int ?tmp;
            ????
            if ?(pX? != ?pY)
            ????
            {
            ????????tmp?
            = ?parent[pX]? + ?parent[pY];? // ?加權合并
            ???????? if ?(parent[pX]? > ?parent[pY])
            ????????
            {
            ????????????parent[pX]?
            = ?pY;
            ????????????parent[pY]?
            = ?tmp;
            ????????}

            ????????
            else
            ????????
            {
            ????????????parent[pY]?
            = ?pX;
            ????????????parent[pX]?
            = ?tmp;
            ????????}

            ????}

            }


            int ?f[(MAXN + 1 ) * 3 ]? = ? { 0 } ;
            int ?n,?m;

            void ?initTree()
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]?
            = ?n;
            ????????c?
            = ?c? * ? 2 ;
            ????????r?
            = ?(l? + ?r)? / ? 2 ;
            ????}

            ????f[c]?
            = ?n; // 葉子初始化
            }


            void ?insertTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            ++ ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            ++ ; // 葉子增加1
            }


            void ?delTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????f[c]
            -- ;
            ????????mid?
            = ?(r? + ?l)? / ? 2 ;
            ????????
            if ?(k? > ?mid)
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????f[c]
            -- ; // 葉子減少1
            }


            int ?searchTree( int ?k)
            {
            ????
            int ?l? = ? 1 ,?r? = ?n;
            ????
            int ?c? = ? 1 ;
            ????
            int ?mid;

            ????
            while ?(l? < ?r)
            ????
            {
            ????????mid?
            = ?(l? + ?r)? / ? 2 ;
            ????????
            if ?(k? <= ?f[ 2 * c + 1 ])
            ????????
            {
            ????????????l?
            = ?mid? + ? 1 ;
            ????????????c?
            = ?c? * ? 2 ? + ? 1 ;
            ????????}

            ????????
            else
            ????????
            {
            ????????????k?
            -= ?f[ 2 * c + 1 ];
            ????????????r?
            = ?mid;
            ????????????c?
            = ?c? * ? 2 ;
            ????????}

            ????}

            ????
            return ?l;
            }


            int ?main()
            {
            ????
            int ?i,?j;
            ????
            int ?x,?y;
            ????
            int ?k;
            ????
            int ?l,?r;
            ????
            int ?cmd;
            ????
            int ?px,?py;
            ????
            int ?tx,?ty,?tz;
            ????UFset?UFS;

            ????
            ????scanf(
            " %d%d " ,? & n,? & m);
            ????initTree();
            ????
            for ?(i = 0 ;?i < m;?i ++ )
            ????
            {
            ????????scanf(
            " %d " ,? & cmd);
            ????????
            if ?(cmd? == ? 0 )
            ????????
            {
            ????????????scanf(
            " %d%d " ,? & x,? & y);
            ????????????px?
            = ?UFS.Find(x);
            ????????????py?
            = ?UFS.Find(y);
            ????????????
            if ?(px? != ?py)
            ????????????
            {
            ????????????????tx?
            = ? - UFS.parent[px];
            ????????????????ty?
            = ? - UFS.parent[py];
            ????????????????tz?
            = ?tx? + ?ty;
            ????????????????UFS.Union(x,?y);
            ????????????????insertTree(tz);
            ????????????????delTree(tx);
            ????????????????delTree(ty);
            ????????????}

            ????????}

            ????????
            else
            ????????
            {
            ????????????scanf(
            " %d " ,? & k);
            ????????????printf(
            " %d\n " ,?searchTree(k));
            ????????}

            ????}

            ????
            return ? 0 ;
            }
            posted on 2006-09-06 13:28 閱讀(815) 評論(4)  編輯 收藏 引用 所屬分類: ACM題目

            FeedBack:
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-22 13:24 A3
            可否講解一下線段樹部分  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-22 17:47 
            把區間劃出來, 節點(非葉子), 表示該區間里面含有多少個元素。
            如果 n = 10;
            而集合大小分別是 1, 1, 2, 6;

            則 區間(1-10) = 4; 區間(1-5) = 3;

            就這樣用線段樹動態維護每次集合合并后的集合大小。

            初始化(1-10) = 10;
            因為開始時, 集合大小為1, 1, 1, 1, 1, 1, 1, 1, 1, 1  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-24 19:53 Optimistic
            偶的第一次呢 靜待。。。  回復  更多評論
              
            # re: pku2985 第一次用兩種數據結構解題, 并查集+線段樹 2006-09-24 22:23 
            +U ^_^  回復  更多評論
              
            东京热TOKYO综合久久精品| 久久精品国产精品亚洲| 一本色道久久88综合日韩精品| 久久狠狠一本精品综合网| 久久国产成人午夜aⅴ影院| 无码人妻久久一区二区三区蜜桃 | 亚洲国产精品婷婷久久| 久久99精品国产麻豆婷婷| 欧美亚洲日本久久精品| 久久婷婷五月综合色奶水99啪| 好久久免费视频高清| 亚洲国产综合久久天堂| 久久国产亚洲高清观看| 久久精品国产一区二区三区不卡| 色播久久人人爽人人爽人人片AV| 久久精品一本到99热免费| 91久久精品视频| 蜜臀av性久久久久蜜臀aⅴ | 国产精品无码久久久久久| 国内精品久久久久久麻豆| 久久久久人妻一区二区三区vr| 久久久久久亚洲精品无码| 国产Av激情久久无码天堂| 久久无码AV中文出轨人妻| 狠狠色丁香婷婷综合久久来来去 | 久久久久免费看成人影片| 国内精品久久久久久不卡影院| 久久www免费人成看片| 久久91精品综合国产首页| 久久99国产综合精品女同| 久久婷婷五月综合成人D啪| 久久久久黑人强伦姧人妻| 久久久久久久尹人综合网亚洲 | 精品久久久久久久久中文字幕| 亚洲国产成人久久精品99| 精品久久久久久久久久中文字幕| 久久久久99精品成人片试看 | 国产午夜福利精品久久| 国产精品免费看久久久| 亚洲欧美伊人久久综合一区二区| 日本国产精品久久|