• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            C++ Programmer's Cookbook

            {C++ 基礎} {C++ 高級} {C#界面,C++核心算法} {設計模式} {C#基礎}

            Managed DirectX --- Matrix&Transform(Translation and Scaling and Rotation)

            • 一 Translation

            The following transformation translates the point (x, y, z) to a new point (x', y', z').

            Translate 18

            You can manually create a translation matrix in managed code. The following C# code example shows the source code for a function that creates a matrix to translate vertices.

            						[C#]
            						
            private Matrix TranslateMatrix(float dx, float dy, float dz) { Matrix ret; ret = Matrix.Identity; ret.M41 = dx; ret.M42 = dy; ret.M43 = dz; return ret; }

            For convenience, managed the Microsoft Direct3D supplies the Translation method.

            • 二 Scaling

            The following transformation scales the point (x, y, z) by arbitrary values in the x-, y-, and z-directions to a new point (x', y', z').

            Matrix scale?


            • 三?? Rotation

            ?

            The transformations described here are for left-handed coordinate systems, and so might be different from transformation matrices that you have seen elsewhere. For more information, see 3-D Coordinate Systems.

            The following transformation rotates the point (x, y, z) around the x-axis, producing a new point (x', y', z').

            Matrix x rotation

            The following transformation rotates the point around the y-axis.

            Matrix y rotation

            The following transformation rotates the point around the z-axis.

            Matrix z rotation

            In these example matrices, the Greek letter theta (?) stands for the angle of rotation, in radians. Angles are measured clockwise when looking along the rotation axis toward the origin.

            In a managed application, use the Matrix.RotationX, Matrix.RotationY, and Matrix.RotationZ methods to create rotation matrices. The following C# code example demonstrates how the Matrix.RotationX method performs a rotation.

            				[C#]
            				
            private Matrix MatrixRotationX(float angle) { double sin, cos; sin = Math.Sin(angle); cos = Math.Cos(angle); Matrix ret; ret.M11 = 1.0f; ret.M12 = 0.0f; ret.M13 = 0.0f; ret.M14 = 0.0f; ret.M21 = 0.0f; ret.M22 = (float)cos; ret.M23 = (float)sin; ret.M24 = 0.0f; ret.M31 = 0.0f; ret.M32 = (float)-sin; ret.M33 = (float)cos; ret.M34 = 0.0f; ret.M41 = 0.0f; ret.M42 = 0.0f; ret.M43 = 0.0f; ret.M44 = 1.0f; return ret; }

            • 四? Matrix Concatenation

            One advantage of using matrices is that you can combine the effects of two or more matrices by multiplying them. This means that, to rotate a model and then translate it to some location, you do not need to apply two matrices. Instead, you multiply the rotation and translation matrices to produce a composite matrix that contains all of their effects. This process, called matrix concatenation, can be written with the following formula.

            Matrix concatination

            In this formula, C is the composite matrix being created, and M1 through Mn are the individual transformations that matrix C contains. In most cases, only two or three matrices are concatenated, but there is no limit.

            Use the Matrix.Multiply method to perform matrix multiplication.

            The order in which the matrix multiplication is performed is crucial. The preceding formula reflects the left-to-right rule of matrix concatenation. That is, the visible effects of the matrices that you use to create a composite matrix occur in left-to-right order. A typical world transformation matrix is shown in the following example. Imagine that you are creating the world transformation matrix for a stereotypical flying saucer. You would probably want to spin the flying saucer around its center - the y-axis of model space - and translate it to some other location in your scene. To accomplish this effect, you first create a rotation matrix, and then multiply it by a translation matrix, as shown in the following formula.

            World Space explanation

            In this formula, Ry is a matrix for rotation about the y-axis, and Tw is a translation to some position in world coordinates.

            The order in which you multiply the matrices is important because, unlike multiplying two scalar values, matrix multiplication is not commutative. Multiplying the matrices in the opposite order has the visual effect of translating the flying saucer to its world space position, and then rotating it around the world origin.

            No matter what type of matrix you are creating, remember the left-to-right rule to ensure that you achieve the expected effects.

            到底什么時候在左邊什么時候在右邊?


            總結:

            • 五 3-D Transformations


            In applications that work with 3-D graphics, geometrical transformations can be used to do the following.

            • Express the location of an object relative to another object.
            • Rotate and size objects.
            • Change viewing positions, directions, and perspectives.

            You can transform any point (x,y,z) into another point (x', y', z') using a 4 x 4 matrix.

            Matrix multiply

            Perform the following operations on (x, y, z) and the matrix to produce the point (x', y', z').

            Matrix expanded

            The most common transformations are translation, rotation, and scaling. You can combine the matrices that produce these effects into a single matrix to calculate several transformations at once.

            posted on 2006-05-09 16:10 夢在天涯 閱讀(1398) 評論(0)  編輯 收藏 引用 所屬分類: DirectX

            公告

            EMail:itech001#126.com

            導航

            統計

            • 隨筆 - 461
            • 文章 - 4
            • 評論 - 746
            • 引用 - 0

            常用鏈接

            隨筆分類

            隨筆檔案

            收藏夾

            Blogs

            c#(csharp)

            C++(cpp)

            Enlish

            Forums(bbs)

            My self

            Often go

            Useful Webs

            Xml/Uml/html

            搜索

            •  

            積分與排名

            • 積分 - 1808693
            • 排名 - 5

            最新評論

            閱讀排行榜

            精品久久香蕉国产线看观看亚洲 | 日本精品久久久久中文字幕| 色综合合久久天天综合绕视看| 欧美喷潮久久久XXXXx| 夜夜亚洲天天久久| 久久久亚洲欧洲日产国码是AV| 久久久精品2019免费观看| 久久性精品| 久久精品一本到99热免费| 国产精品岛国久久久久| 国产色综合久久无码有码| 成人亚洲欧美久久久久| 亚洲va久久久噜噜噜久久男同 | 囯产极品美女高潮无套久久久| 久久久久久久久久久久中文字幕| 久久WWW免费人成—看片| 99久久综合狠狠综合久久止| 欧洲性大片xxxxx久久久| 国产99久久久国产精免费| 久久久无码精品亚洲日韩蜜臀浪潮 | 91麻豆精品国产91久久久久久| 亚洲国产成人精品久久久国产成人一区二区三区综 | 99久久er这里只有精品18| 亚洲国产视频久久| 精品国产婷婷久久久| 久久婷婷五月综合97色| 奇米影视7777久久精品人人爽| 久久久久久青草大香综合精品| 99久久夜色精品国产网站| 亚洲国产精品无码成人片久久| 久久精品国产精品亜洲毛片| 久久99精品久久久久久动态图 | 久久精品99无色码中文字幕| 99麻豆久久久国产精品免费| 久久精品国产亚洲77777| 精品人妻伦九区久久AAA片69| 欧美日韩成人精品久久久免费看 | 伊人色综合久久天天网| 99久久精品国产一区二区三区| 狠狠色婷婷久久综合频道日韩| 超级碰碰碰碰97久久久久|