• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            C++ Programmer's Cookbook

            {C++ 基礎} {C++ 高級} {C#界面,C++核心算法} {設計模式} {C#基礎}

            Managed DirectX --- Matrix&Transform(Translation and Scaling and Rotation)

            • 一 Translation

            The following transformation translates the point (x, y, z) to a new point (x', y', z').

            Translate 18

            You can manually create a translation matrix in managed code. The following C# code example shows the source code for a function that creates a matrix to translate vertices.

            						[C#]
            						
            private Matrix TranslateMatrix(float dx, float dy, float dz) { Matrix ret; ret = Matrix.Identity; ret.M41 = dx; ret.M42 = dy; ret.M43 = dz; return ret; }

            For convenience, managed the Microsoft Direct3D supplies the Translation method.

            • 二 Scaling

            The following transformation scales the point (x, y, z) by arbitrary values in the x-, y-, and z-directions to a new point (x', y', z').

            Matrix scale?


            • 三?? Rotation

            ?

            The transformations described here are for left-handed coordinate systems, and so might be different from transformation matrices that you have seen elsewhere. For more information, see 3-D Coordinate Systems.

            The following transformation rotates the point (x, y, z) around the x-axis, producing a new point (x', y', z').

            Matrix x rotation

            The following transformation rotates the point around the y-axis.

            Matrix y rotation

            The following transformation rotates the point around the z-axis.

            Matrix z rotation

            In these example matrices, the Greek letter theta (?) stands for the angle of rotation, in radians. Angles are measured clockwise when looking along the rotation axis toward the origin.

            In a managed application, use the Matrix.RotationX, Matrix.RotationY, and Matrix.RotationZ methods to create rotation matrices. The following C# code example demonstrates how the Matrix.RotationX method performs a rotation.

            				[C#]
            				
            private Matrix MatrixRotationX(float angle) { double sin, cos; sin = Math.Sin(angle); cos = Math.Cos(angle); Matrix ret; ret.M11 = 1.0f; ret.M12 = 0.0f; ret.M13 = 0.0f; ret.M14 = 0.0f; ret.M21 = 0.0f; ret.M22 = (float)cos; ret.M23 = (float)sin; ret.M24 = 0.0f; ret.M31 = 0.0f; ret.M32 = (float)-sin; ret.M33 = (float)cos; ret.M34 = 0.0f; ret.M41 = 0.0f; ret.M42 = 0.0f; ret.M43 = 0.0f; ret.M44 = 1.0f; return ret; }

            • 四? Matrix Concatenation

            One advantage of using matrices is that you can combine the effects of two or more matrices by multiplying them. This means that, to rotate a model and then translate it to some location, you do not need to apply two matrices. Instead, you multiply the rotation and translation matrices to produce a composite matrix that contains all of their effects. This process, called matrix concatenation, can be written with the following formula.

            Matrix concatination

            In this formula, C is the composite matrix being created, and M1 through Mn are the individual transformations that matrix C contains. In most cases, only two or three matrices are concatenated, but there is no limit.

            Use the Matrix.Multiply method to perform matrix multiplication.

            The order in which the matrix multiplication is performed is crucial. The preceding formula reflects the left-to-right rule of matrix concatenation. That is, the visible effects of the matrices that you use to create a composite matrix occur in left-to-right order. A typical world transformation matrix is shown in the following example. Imagine that you are creating the world transformation matrix for a stereotypical flying saucer. You would probably want to spin the flying saucer around its center - the y-axis of model space - and translate it to some other location in your scene. To accomplish this effect, you first create a rotation matrix, and then multiply it by a translation matrix, as shown in the following formula.

            World Space explanation

            In this formula, Ry is a matrix for rotation about the y-axis, and Tw is a translation to some position in world coordinates.

            The order in which you multiply the matrices is important because, unlike multiplying two scalar values, matrix multiplication is not commutative. Multiplying the matrices in the opposite order has the visual effect of translating the flying saucer to its world space position, and then rotating it around the world origin.

            No matter what type of matrix you are creating, remember the left-to-right rule to ensure that you achieve the expected effects.

            到底什么時候在左邊什么時候在右邊?


            總結:

            • 五 3-D Transformations


            In applications that work with 3-D graphics, geometrical transformations can be used to do the following.

            • Express the location of an object relative to another object.
            • Rotate and size objects.
            • Change viewing positions, directions, and perspectives.

            You can transform any point (x,y,z) into another point (x', y', z') using a 4 x 4 matrix.

            Matrix multiply

            Perform the following operations on (x, y, z) and the matrix to produce the point (x', y', z').

            Matrix expanded

            The most common transformations are translation, rotation, and scaling. You can combine the matrices that produce these effects into a single matrix to calculate several transformations at once.

            posted on 2006-05-09 16:10 夢在天涯 閱讀(1392) 評論(0)  編輯 收藏 引用 所屬分類: DirectX

            公告

            EMail:itech001#126.com

            導航

            統計

            • 隨筆 - 461
            • 文章 - 4
            • 評論 - 746
            • 引用 - 0

            常用鏈接

            隨筆分類

            隨筆檔案

            收藏夾

            Blogs

            c#(csharp)

            C++(cpp)

            Enlish

            Forums(bbs)

            My self

            Often go

            Useful Webs

            Xml/Uml/html

            搜索

            •  

            積分與排名

            • 積分 - 1807503
            • 排名 - 5

            最新評論

            閱讀排行榜

            久久综合噜噜激激的五月天| 国产精品成人99久久久久 | 国产精品视频久久久| 一本久道久久综合狠狠躁AV| 久久www免费人成看国产片| 亚洲午夜久久影院| 热久久国产精品| 99久久国产热无码精品免费久久久久| www性久久久com| 88久久精品无码一区二区毛片| 香蕉久久夜色精品国产小说| 久久综合九色综合久99| 国产精品免费看久久久香蕉| 久久99精品久久久久久秒播| 久久久久国产精品嫩草影院| 久久天天日天天操综合伊人av| 久久久久99精品成人片 | 久久久久99这里有精品10 | 亚洲国产精品18久久久久久| 亚洲精品无码久久久久久| 欧美精品久久久久久久自慰| 久久被窝电影亚洲爽爽爽| 26uuu久久五月天| 久久99热这里只频精品6| 亚洲αv久久久噜噜噜噜噜| 国产一区二区三区久久| 久久国产精品视频| 久久亚洲AV无码精品色午夜麻豆| 精品人妻伦九区久久AAA片69| 色欲av伊人久久大香线蕉影院| 久久久91精品国产一区二区三区 | 狠狠色伊人久久精品综合网 | 久久久国产视频| 久久精品www| 99久久国产综合精品女同图片| 久久久中文字幕| 精品国产青草久久久久福利| 亚洲综合久久综合激情久久| 久久夜色精品国产亚洲| 久久99热这里只有精品国产| 久久久久亚洲Av无码专|