• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Problem B : Always an Integer

            Combinatorics is a branch of mathematics chiefly concerned with counting discrete objects. For instance, how many ways can you pick two people out of a crowd of n people? Into how many regions can you divide a circular disk by connecting n points on its boundary with one another? How many cubes are in a pyramid with square layers ranging from 1 × 1 to n × n cubes?


                               TFigure 1:T If we connect six points on the boundary of a circle, at most 31 regions are created.

            Many questions like these have answers that can be reduced to simple polynomials in n. The answer to the first question above is n(n-1)/2, or (n^2-n)/2. The answer to the second is (n^4-6n^3+23n^2-18n+24)/24. The answer to the third is n(n+1)(2n+1)/6, or (2n^3+3n^2+n)/6. We write these polynomials in a standard form, as a polynomial with integer coefficients divided by a positive integer denominator. These polynomials are answers to questions that can have integer answers only. But since they have fractional coefficients, they look as if they could produce non-integer results! Of course, evaluating these particular polynomials on a positive integer always results in an integer. For other polynomials of similar form, this is not necessarily true. It can be hard to tell the two cases apart. So that, naturally, is your task.

            Input
            The input consists of multiple test cases, each on a separate line. Each test case is an expression in the form (P)/D, where P is a polynomial with integer coefficients and D is a positive integer denominator. P is a sum of terms of the form Cn^E, where the coefficient C and the exponent E satisfy the following conditions:
            1. E is an integer satisfying 0 ≤ E ≤ 100. If E is 0, then Cn^E is expressed as C. If E is 1, then Cn^E is expressed as Cn, unless C is 1 or -1. In those instances, Cn^E is expressed as n or -n.
            2. C is an integer. If C is 1 or -1 and E is not 0 or 1, then the Cn^E will appear as n^E or -n^E.
            3. Only non-negative C values that are not part of the first term in the polynomial are preceded by +.
            4. Exponents in consecutive terms are strictly decreasing.
            5. C and D fit in a 32-bit signed integer.

             

            See the sample input for details.
            Input is terminated by a line containing a single period.

            Output
            For each test case, print the case number (starting with 1). Then print TAlways an integerT if the test casepolynomial evaluates to an integer for every positive integer n. Print TNot always an integerT otherwise. Print the output for separate test cases on separate lines. Your output should follow the same format as the sample output.

            Sample Input
            (n^2-n)/2
            (2n^3+3n^2+n)/6
            (-n^14-11n+1)/3
            .

            Output for the Sample Input
            Case 1: Always an integer
            Case 2: Always an integer
            Case 3: Not always an integer

            題目大概的意思是說:給定一個關于n的p次多項式,問該多項式是否為整值多項式。
            根據定理:n次多項式f(n)是整值多項式當且僅當f(n)至少在n+1個連續的整數上都取整值。
            只用將0-MAXPOW(取101)依次代入多項式的分子,并對分母d取模,判斷是否都為0即可。
            至于為什么要取MAXPOW,而不是多項式f(n)的最大的次數max{pi}:為了使問題一般化,我們可以講所有的多項式都看成是MAXPOW次的,只不過當次數p>max{pi}時,其對應的系數ci全部為0,并不妨礙問題的解決。這樣一來,就不需要再額外求出f(n)的最大次數max{pi},使程序得到簡化。

            399645  2009-04-23 07:44:07 Accepted 0.066 Minimum 19193  C++ 4119 - Always an integer
             1 #include <iostream>
             2 using namespace std;
             3 
             4 const int MAXPOW = 101;
             5 int c[MAXPOW],d;
             6 char ch;
             7 
             8 int calculate(long long n){
             9     int i;
            10     long long ans=0;
            11     for(i=MAXPOW;i>=0;i--)
            12         ans=(ans*n+c[i])%d;
            13     return (int)ans;
            14 }
            15 bool judge(){
            16     int i;
            17     for(i=0;i<=MAXPOW;i++)
            18         if(calculate(i)) return false;
            19     return true;
            20 }
            21 int main(){
            22     int end,ca=1,sign,value,pow;
            23     while(true){
            24         ch=getchar();
            25         if(ch=='.'break;
            26         memset(c,0,sizeof(c));
            27         while(true){
            28             end=0,scanf(")%n",&end);
            29             if(end) break;
            30             scanf("+");
            31             sign=0,value=1,scanf("-%n",&sign);
            32             scanf("%d",&value);
            33             if(sign) value=-value;
            34             scanf("%nn%n^%n",&pow,&pow,&pow);
            35             if(pow>1) scanf("%d",&pow);
            36             c[pow]+=value;
            37         }
            38         scanf("/%d",&d);
            39         getchar();
            40         printf("Case %d: ",ca++);
            41         puts(judge() ? "Always an integer" : "Not always an integer");
            42     }
            43     return 0;
            44 }

            posted on 2009-04-23 12:51 極限定律 閱讀(1879) 評論(0)  編輯 收藏 引用 所屬分類: ACM-ICPC World Final 2008題解

            <2009年4月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            www久久久天天com| 久久精品国产一区二区三区不卡 | 7777精品久久久大香线蕉| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 国内精品伊人久久久影院| 亚洲欧美国产精品专区久久| 一本色道久久88精品综合| 精品久久久久久国产潘金莲| 精品久久久久久无码人妻蜜桃| 久久久久高潮毛片免费全部播放| 99久久99久久精品国产片果冻| 亚洲国产美女精品久久久久∴| 亚洲国产欧洲综合997久久| 伊人久久大香线焦AV综合影院| 国产精品免费久久久久影院| 久久久WWW成人| 久久99热精品| 日韩精品久久久肉伦网站| 久久男人AV资源网站| 91精品国产高清91久久久久久| 99精品国产99久久久久久97 | 久久精品毛片免费观看| 久久狠狠一本精品综合网| 色综合久久综合中文综合网| 久久99精品久久久久久9蜜桃| 青青草国产精品久久| 色综合久久久久综合体桃花网| 久久涩综合| 久久久青草青青亚洲国产免观| 中文字幕无码免费久久| 热综合一本伊人久久精品| 亚洲&#228;v永久无码精品天堂久久| 精品久久久中文字幕人妻| 久久一区二区三区免费| 成人午夜精品久久久久久久小说| 久久99国产乱子伦精品免费| 亚洲第一极品精品无码久久| 久久亚洲日韩精品一区二区三区| 蜜臀久久99精品久久久久久小说| 亚洲色大成网站WWW久久九九| 国产69精品久久久久APP下载 |