• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Problem B : Always an Integer

            Combinatorics is a branch of mathematics chiefly concerned with counting discrete objects. For instance, how many ways can you pick two people out of a crowd of n people? Into how many regions can you divide a circular disk by connecting n points on its boundary with one another? How many cubes are in a pyramid with square layers ranging from 1 × 1 to n × n cubes?


                               TFigure 1:T If we connect six points on the boundary of a circle, at most 31 regions are created.

            Many questions like these have answers that can be reduced to simple polynomials in n. The answer to the first question above is n(n-1)/2, or (n^2-n)/2. The answer to the second is (n^4-6n^3+23n^2-18n+24)/24. The answer to the third is n(n+1)(2n+1)/6, or (2n^3+3n^2+n)/6. We write these polynomials in a standard form, as a polynomial with integer coefficients divided by a positive integer denominator. These polynomials are answers to questions that can have integer answers only. But since they have fractional coefficients, they look as if they could produce non-integer results! Of course, evaluating these particular polynomials on a positive integer always results in an integer. For other polynomials of similar form, this is not necessarily true. It can be hard to tell the two cases apart. So that, naturally, is your task.

            Input
            The input consists of multiple test cases, each on a separate line. Each test case is an expression in the form (P)/D, where P is a polynomial with integer coefficients and D is a positive integer denominator. P is a sum of terms of the form Cn^E, where the coefficient C and the exponent E satisfy the following conditions:
            1. E is an integer satisfying 0 ≤ E ≤ 100. If E is 0, then Cn^E is expressed as C. If E is 1, then Cn^E is expressed as Cn, unless C is 1 or -1. In those instances, Cn^E is expressed as n or -n.
            2. C is an integer. If C is 1 or -1 and E is not 0 or 1, then the Cn^E will appear as n^E or -n^E.
            3. Only non-negative C values that are not part of the first term in the polynomial are preceded by +.
            4. Exponents in consecutive terms are strictly decreasing.
            5. C and D fit in a 32-bit signed integer.

             

            See the sample input for details.
            Input is terminated by a line containing a single period.

            Output
            For each test case, print the case number (starting with 1). Then print TAlways an integerT if the test casepolynomial evaluates to an integer for every positive integer n. Print TNot always an integerT otherwise. Print the output for separate test cases on separate lines. Your output should follow the same format as the sample output.

            Sample Input
            (n^2-n)/2
            (2n^3+3n^2+n)/6
            (-n^14-11n+1)/3
            .

            Output for the Sample Input
            Case 1: Always an integer
            Case 2: Always an integer
            Case 3: Not always an integer

            題目大概的意思是說:給定一個關于n的p次多項式,問該多項式是否為整值多項式。
            根據定理:n次多項式f(n)是整值多項式當且僅當f(n)至少在n+1個連續的整數上都取整值。
            只用將0-MAXPOW(取101)依次代入多項式的分子,并對分母d取模,判斷是否都為0即可。
            至于為什么要取MAXPOW,而不是多項式f(n)的最大的次數max{pi}:為了使問題一般化,我們可以講所有的多項式都看成是MAXPOW次的,只不過當次數p>max{pi}時,其對應的系數ci全部為0,并不妨礙問題的解決。這樣一來,就不需要再額外求出f(n)的最大次數max{pi},使程序得到簡化。

            399645  2009-04-23 07:44:07 Accepted 0.066 Minimum 19193  C++ 4119 - Always an integer
             1 #include <iostream>
             2 using namespace std;
             3 
             4 const int MAXPOW = 101;
             5 int c[MAXPOW],d;
             6 char ch;
             7 
             8 int calculate(long long n){
             9     int i;
            10     long long ans=0;
            11     for(i=MAXPOW;i>=0;i--)
            12         ans=(ans*n+c[i])%d;
            13     return (int)ans;
            14 }
            15 bool judge(){
            16     int i;
            17     for(i=0;i<=MAXPOW;i++)
            18         if(calculate(i)) return false;
            19     return true;
            20 }
            21 int main(){
            22     int end,ca=1,sign,value,pow;
            23     while(true){
            24         ch=getchar();
            25         if(ch=='.'break;
            26         memset(c,0,sizeof(c));
            27         while(true){
            28             end=0,scanf(")%n",&end);
            29             if(end) break;
            30             scanf("+");
            31             sign=0,value=1,scanf("-%n",&sign);
            32             scanf("%d",&value);
            33             if(sign) value=-value;
            34             scanf("%nn%n^%n",&pow,&pow,&pow);
            35             if(pow>1) scanf("%d",&pow);
            36             c[pow]+=value;
            37         }
            38         scanf("/%d",&d);
            39         getchar();
            40         printf("Case %d: ",ca++);
            41         puts(judge() ? "Always an integer" : "Not always an integer");
            42     }
            43     return 0;
            44 }

            posted on 2009-04-23 12:51 極限定律 閱讀(1871) 評論(0)  編輯 收藏 引用 所屬分類: ACM-ICPC World Final 2008題解

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久精品国产一区二区三区日韩| 一级A毛片免费观看久久精品| …久久精品99久久香蕉国产| 老司机国内精品久久久久| 国产精品99久久久久久董美香 | 久久久久久久久久免免费精品| 中文字幕无码久久久| 丰满少妇人妻久久久久久| 青青热久久国产久精品 | 久久无码一区二区三区少妇 | 久久99精品国产99久久6| 精品久久亚洲中文无码| 国产精品青草久久久久福利99| 亚洲欧洲日产国码无码久久99| 久久艹国产| 久久精品嫩草影院| 久久久噜噜噜久久中文福利| 亚洲日韩欧美一区久久久久我| 亚洲综合久久综合激情久久| 色偷偷偷久久伊人大杳蕉| 久久精品视频一| 亚洲国产成人久久综合碰| 国产精品九九久久免费视频| 一本伊大人香蕉久久网手机| 久久精品亚洲精品国产色婷 | 久久精品国产91久久综合麻豆自制 | 人妻无码精品久久亚瑟影视| 老司机午夜网站国内精品久久久久久久久 | 少妇内射兰兰久久| 欧美亚洲国产精品久久久久| 深夜久久AAAAA级毛片免费看| 久久国产精品一区| 免费精品久久久久久中文字幕| 国产免费久久精品99久久| 国内精品免费久久影院| 久久久久九九精品影院| 午夜福利91久久福利| 国产69精品久久久久APP下载| 精品国产青草久久久久福利| 午夜不卡久久精品无码免费| 久久棈精品久久久久久噜噜|