• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            技術,瞎侃,健康,休閑……

            mahu@cppblog 人類的全部才能無非是時間和耐心的混合物
            posts - 11, comments - 13, trackbacks - 0, articles - 12
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            The 3n + 1 problem

            Posted on 2006-06-10 00:41 mahudu@cppblog 閱讀(1311) 評論(3)  編輯 收藏 引用 所屬分類: C/C++

            Background

            Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

            The Problem

            Consider the following algorithm:

            1.	input n

            2. print n

            3. if n = 1 then STOP

            4. if n is odd then tex2html_wrap_inline44

            5. else tex2html_wrap_inline46

            6. GOTO 2

            Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

            It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

            Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

            For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

            The Input

            The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

            You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

            You can assume that no opperation overflows a 32-bit integer.

            The Output

            For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

            Sample Input

            1 10
            100 200
            201 210
            900 1000

            Sample Output

            1 10 20
            100 200 125
            201 210 89
            900 1000 174

            Solution ?

            #include <iostream>

            using namespace std;

            ?

            int cycle(intm)

            {

            ?? int i = 1;

            ?? while (m != 1){

            ????? if(m%2)

            ??????? m = m*3 + 1;

            ????? else

            ??????? m /= 2;

            ????? i++;

            ?? }

            ?? return i;

            }??

            ?

            int main()

            {

            ?? int m,n,max,temp;

            ?? int mOriginal,nOriginal;

            ?? int i;

            ?

            ?? while (cin >> m >> n){

            ????? mOriginal = m;

            ????? nOriginal = n;

            ????? if (m > n){

            ??????? temp = m;

            ??????? m = n;

            ??????? n = temp;

            ????? }

            ?

            ????? max = cycle(m);

            ????? for (i = m+1; i <= n; i++){

            ??????? temp = cycle(i);

            ??????? if (temp > max){

            ?????????? max = temp;

            ??????? }

            ????? }?

            ????? cout << mOriginal << " " << nOriginal << " " << max << endl;

            ?? }

            ?? return 0;

            }

            Feedback

            # re: The 3n + 1 problem  回復  更多評論   

            2007-11-14 20:34 by 無意中看到
            你這個程序屬于很難通過的,基本上會碰到超時問題
            輸入: 1 1000000
            看你多牛的計算機3秒能搞出來
            這是典型的dp問題,暴力是不好用的

            # re: The 3n + 1 problem  回復  更多評論   

            2008-10-18 17:17 by TaiwanNo.1
            /*
            這個可以以0.7 sec完成
            */
            #include <stdio.h>

            int compute(int a)
            {
            int cnt = 1;
            while(a > 1)
            {
            a & 0x01 ? (a = (a<<1) + a + 1) : (a >>= 1);
            ++cnt;
            }
            return cnt;
            }


            int a, b, c;
            int i, j;
            int main(void)
            {

            while(0 < scanf("%d %d", &i, &j))
            {
            c = 0;
            i < j ? (a = i, b = j) : (a = j, b = i);
            while(a <= b)
            {
            int tmp = compute(a++);
            if(tmp > c)
            c = tmp;
            }
            printf("%d %d %d\n", i, j, c);
            }
            return 0;
            }

            # re: The 3n + 1 problem  回復  更多評論   

            2011-01-16 13:39 by UDHeart
            @TaiwanNo.1
            ...我就是這樣寫的,沒有這么快
            欧美激情精品久久久久| 久久久久国产亚洲AV麻豆| 久久久久精品国产亚洲AV无码| 久久精品国产清自在天天线| 中文国产成人精品久久亚洲精品AⅤ无码精品 | 久久精品无码一区二区三区| 成人精品一区二区久久久| 亚洲第一永久AV网站久久精品男人的天堂AV | 久久99国产精品成人欧美| 99蜜桃臀久久久欧美精品网站| 久久99精品国产一区二区三区 | 午夜精品久久久久久影视777| 日韩精品久久无码人妻中文字幕 | 国内精品久久久久久久久电影网| 久久久久久无码Av成人影院| 久久精品无码一区二区日韩AV| 一本久久知道综合久久| 久久影院久久香蕉国产线看观看| 日本欧美久久久久免费播放网| 热综合一本伊人久久精品| 久久99国产精品久久99| 亚洲人成精品久久久久| 天天综合久久一二三区| 久久青青草原国产精品免费| 久久精品国产久精国产果冻传媒 | 久久国产香蕉视频| 97精品伊人久久久大香线蕉| 久久精品夜夜夜夜夜久久| 亚洲国产成人久久一区WWW| 99久久精品费精品国产| 久久久久久久尹人综合网亚洲| 日韩人妻无码精品久久免费一| 精品久久久久久无码不卡| 精品国产热久久久福利| AA级片免费看视频久久| 国内精品久久久久| 久久综合欧美成人| 激情久久久久久久久久| 久久国产福利免费| 香蕉久久夜色精品国产2020| 亚洲国产小视频精品久久久三级 |