• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            技術(shù),瞎侃,健康,休閑……

            mahu@cppblog 人類的全部才能無非是時(shí)間和耐心的混合物
            posts - 11, comments - 13, trackbacks - 0, articles - 12
              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理

            The 3n + 1 problem

            Posted on 2006-06-10 00:41 mahudu@cppblog 閱讀(1309) 評(píng)論(3)  編輯 收藏 引用 所屬分類: C/C++

            Background

            Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

            The Problem

            Consider the following algorithm:

            1.	input n

            2. print n

            3. if n = 1 then STOP

            4. if n is odd then tex2html_wrap_inline44

            5. else tex2html_wrap_inline46

            6. GOTO 2

            Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

            It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

            Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

            For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

            The Input

            The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

            You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

            You can assume that no opperation overflows a 32-bit integer.

            The Output

            For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

            Sample Input

            1 10
            100 200
            201 210
            900 1000

            Sample Output

            1 10 20
            100 200 125
            201 210 89
            900 1000 174

            Solution ?

            #include <iostream>

            using namespace std;

            ?

            int cycle(intm)

            {

            ?? int i = 1;

            ?? while (m != 1){

            ????? if(m%2)

            ??????? m = m*3 + 1;

            ????? else

            ??????? m /= 2;

            ????? i++;

            ?? }

            ?? return i;

            }??

            ?

            int main()

            {

            ?? int m,n,max,temp;

            ?? int mOriginal,nOriginal;

            ?? int i;

            ?

            ?? while (cin >> m >> n){

            ????? mOriginal = m;

            ????? nOriginal = n;

            ????? if (m > n){

            ??????? temp = m;

            ??????? m = n;

            ??????? n = temp;

            ????? }

            ?

            ????? max = cycle(m);

            ????? for (i = m+1; i <= n; i++){

            ??????? temp = cycle(i);

            ??????? if (temp > max){

            ?????????? max = temp;

            ??????? }

            ????? }?

            ????? cout << mOriginal << " " << nOriginal << " " << max << endl;

            ?? }

            ?? return 0;

            }

            Feedback

            # re: The 3n + 1 problem  回復(fù)  更多評(píng)論   

            2007-11-14 20:34 by 無意中看到
            你這個(gè)程序?qū)儆诤茈y通過的,基本上會(huì)碰到超時(shí)問題
            輸入: 1 1000000
            看你多牛的計(jì)算機(jī)3秒能搞出來
            這是典型的dp問題,暴力是不好用的

            # re: The 3n + 1 problem  回復(fù)  更多評(píng)論   

            2008-10-18 17:17 by TaiwanNo.1
            /*
            這個(gè)可以以0.7 sec完成
            */
            #include <stdio.h>

            int compute(int a)
            {
            int cnt = 1;
            while(a > 1)
            {
            a & 0x01 ? (a = (a<<1) + a + 1) : (a >>= 1);
            ++cnt;
            }
            return cnt;
            }


            int a, b, c;
            int i, j;
            int main(void)
            {

            while(0 < scanf("%d %d", &i, &j))
            {
            c = 0;
            i < j ? (a = i, b = j) : (a = j, b = i);
            while(a <= b)
            {
            int tmp = compute(a++);
            if(tmp > c)
            c = tmp;
            }
            printf("%d %d %d\n", i, j, c);
            }
            return 0;
            }

            # re: The 3n + 1 problem  回復(fù)  更多評(píng)論   

            2011-01-16 13:39 by UDHeart
            @TaiwanNo.1
            ...我就是這樣寫的,沒有這么快
            av国内精品久久久久影院| 久久久精品2019免费观看| 人人狠狠综合久久亚洲婷婷| 69久久精品无码一区二区| 久久精品成人免费网站| 色婷婷综合久久久久中文字幕| 欧美亚洲国产精品久久高清| 国产精品对白刺激久久久| 亚洲国产精品久久久久婷婷老年| 久久男人AV资源网站| 亚洲愉拍99热成人精品热久久| 亚洲精品高清国产一久久| 热久久最新网站获取| 青青草原1769久久免费播放| 久久精品国产免费观看三人同眠| 精品综合久久久久久97超人| 亚洲七七久久精品中文国产| 精品久久久久久久久中文字幕| 99久久免费国产精品特黄| 日本精品久久久久中文字幕8| 久久99国产精品久久99小说 | 久久国产乱子伦精品免费强| 日韩电影久久久被窝网| 久久亚洲国产成人精品性色| 婷婷久久精品国产| 久久久精品波多野结衣| 久久中文字幕一区二区| 久久国产色AV免费观看| 亚洲日本va中文字幕久久| 久久综合九色欧美综合狠狠| 亚洲国产精品一区二区久久| 999久久久免费精品国产| 久久综合狠狠综合久久综合88| 久久人人爽人人爽人人片av麻烦| 久久久久无码国产精品不卡| 88久久精品无码一区二区毛片| 久久这里只有精品首页| 亚洲国产精久久久久久久| 亚洲国产精品久久久久| 久久av免费天堂小草播放| 久久久WWW成人免费精品|