• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0

            NumberPyramids

            Time Limit: 20 Sec  Memory Limit: 128 MB
            Submissions: 103  Solved: 41

            Description

             

            Suppose that there are N numbers written in a row. A row above this one consists of N-1 numbers, the i-th of which is the sum of the i-th and (i+1)-th elements of the first row. Every next row contains one number less than the previous one and every element is the sum of the two corresponding elements in the row below. The N-th row contains a single number. For example, if the initial numbers are {2,1,2,4}, the whole structure will look like this:

            15
            6 9
            3 3 6
            2 1 2 4

            We shall refer to such a structure as a number pyramid. Two number pyramids are equal if all the numbers at corresponding positions are equal. Given ints baseLength and top, compute the total number of different number pyramids consisting of positive integers, having baseLength elements in the first row and the value at the top equal to top. Since the number of such pyramids might be enormous, return the result modulo 1,000,000,009.

             

            Input

             

            Two numbers -- baseLength and top.
            baseLengthwill be between 2 and 1,000,000, inclusive.
            topwill be between 1 and 1,000,000, inclusive.

             

            Output

             

            The total number of different number pyramids Constraints

             

            Sample Input

            3 5
            5 16
            4 15
            15 31556
            150 500
            

            Sample Output

            2
            1
            24
            74280915
            0
            

            HINT

             

            1) The following are two possible pyramids with 3 numbers in the base and the number 5 at the top:

            2) The only number pyramid with base of size 5 and 16 at the top looks like this:

             

            Source

            Topcoder SRM





            非常V5的一道題,一開是以為但是DP,1,000,000的數據范圍真的有點不能接受......
            看了一個大牛的題解,用數論證明了這個題可以轉化成多重背包.....

            思路:
            首先,我們可以證明金字塔最頂端的數和最低端的數是有關系的,關系就是
            C0N-1*a0 + C1N-1*a1 + C2n-1*a2 + ...... Cn-1n-1*an-1 = T      (1)

            而且因為T <= 1,000,000。可以推出n最大是20.....
            繼續觀察上述(1),因為必須符合金字塔,所以a序列都至少為1,所以,我們可以發現,先用T減去每個系數(因為至少一次),之后用那n-1個數做多重背包,求T的方案就行了。

            復雜度是(N * 1,000,000),可以接受。

            代碼:
            #include <cstdio>
            #include 
            <cstring>
            #include 
            <iostream>
            using namespace std;

            const int mod = 1000000009;
            int dp[1000100];
            int n, top;
            int c[21][21];
            void init()
            {
                
            for (int i = 1; i < 21++i)
                {
                    c[i][
            0= c[i][i]  = 1;
                    c[i][
            1= c[i][i - 1= i;
                    
            for (int j = 2; j < i - 1++j)
                    {
                        c[i][j] 
            = c[i - 1][j] + c[i - 1][j - 1];
                    }
                }
            }

            int work(int n, int top)
            {
                
            if (n > 20return 0;
                
            if (1 << (n - 1> top) return 0;
                top 
            -= 1 << (n - 1);
                memset(dp, 
            0sizeof(dp));
                dp[
            0= 1;
                
            for (int i = 0; i <= n - 1++i)
                {
                    
            for (int k = 0; k <= top; ++k)
                    {
                        
            if ((dp[k] && k + c[n - 1][i] <= top) || k == 0)
                        {
                            dp[k 
            + c[n - 1][i]] = (dp[k + c[n - 1][i]] + dp[k]) % mod;
                        }
                    }
                }
                
            return dp[top];
            }

            int main()
            {
                memset(c, 
            -1sizeof(c));
                init();
                
            while (scanf("%d%d"&n, &top) != EOF)
                {
                    printf(
            "%d\n", work(n ,top));
                }
                
            return 0;
            }

            posted on 2011-10-15 22:15 LLawliet 閱讀(109) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            91精品国产综合久久婷婷| 精品国产99久久久久久麻豆| 亚洲精品无码专区久久久| 一本色道久久88精品综合| 精品久久久久久成人AV| 久久久久久国产a免费观看不卡| 久久精品亚洲男人的天堂| 亚洲精品国产自在久久| 2022年国产精品久久久久 | 久久人妻少妇嫩草AV无码蜜桃| 久久久国产亚洲精品| 成人综合伊人五月婷久久| 久久久久亚洲AV成人网人人网站| 精品久久久中文字幕人妻| 久久精品国产亚洲AV不卡| 久久精品国产久精国产果冻传媒 | 久久中文娱乐网| 午夜人妻久久久久久久久| 久久久久久久久久免免费精品| 国产产无码乱码精品久久鸭| 久久亚洲AV无码精品色午夜| 午夜不卡888久久| 99久久免费国产精精品| 午夜精品久久久久久久| 久久这里的只有是精品23| 久久精品亚洲男人的天堂| 伊人久久综在合线亚洲2019| 精品免费久久久久久久| 亚洲精品午夜国产VA久久成人| 日韩亚洲国产综合久久久| 久久99国产一区二区三区| 大香网伊人久久综合网2020| 国产精品无码久久综合| 成人妇女免费播放久久久| 97久久超碰成人精品网站| 久久精品水蜜桃av综合天堂| 伊人久久大香线蕉AV色婷婷色| 久久精品国产精品亚洲精品| 久久久一本精品99久久精品88| 久久人人爽人人爽人人片AV不| 欧美性猛交xxxx免费看久久久|