• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0

            NumberPyramids

            Time Limit: 20 Sec  Memory Limit: 128 MB
            Submissions: 103  Solved: 41

            Description

             

            Suppose that there are N numbers written in a row. A row above this one consists of N-1 numbers, the i-th of which is the sum of the i-th and (i+1)-th elements of the first row. Every next row contains one number less than the previous one and every element is the sum of the two corresponding elements in the row below. The N-th row contains a single number. For example, if the initial numbers are {2,1,2,4}, the whole structure will look like this:

            15
            6 9
            3 3 6
            2 1 2 4

            We shall refer to such a structure as a number pyramid. Two number pyramids are equal if all the numbers at corresponding positions are equal. Given ints baseLength and top, compute the total number of different number pyramids consisting of positive integers, having baseLength elements in the first row and the value at the top equal to top. Since the number of such pyramids might be enormous, return the result modulo 1,000,000,009.

             

            Input

             

            Two numbers -- baseLength and top.
            baseLengthwill be between 2 and 1,000,000, inclusive.
            topwill be between 1 and 1,000,000, inclusive.

             

            Output

             

            The total number of different number pyramids Constraints

             

            Sample Input

            3 5
            5 16
            4 15
            15 31556
            150 500
            

            Sample Output

            2
            1
            24
            74280915
            0
            

            HINT

             

            1) The following are two possible pyramids with 3 numbers in the base and the number 5 at the top:

            2) The only number pyramid with base of size 5 and 16 at the top looks like this:

             

            Source

            Topcoder SRM





            非常V5的一道題,一開是以為但是DP,1,000,000的數據范圍真的有點不能接受......
            看了一個大牛的題解,用數論證明了這個題可以轉化成多重背包.....

            思路:
            首先,我們可以證明金字塔最頂端的數和最低端的數是有關系的,關系就是
            C0N-1*a0 + C1N-1*a1 + C2n-1*a2 + ...... Cn-1n-1*an-1 = T      (1)

            而且因為T <= 1,000,000??梢酝瞥鰊最大是20.....
            繼續觀察上述(1),因為必須符合金字塔,所以a序列都至少為1,所以,我們可以發現,先用T減去每個系數(因為至少一次),之后用那n-1個數做多重背包,求T的方案就行了。

            復雜度是(N * 1,000,000),可以接受。

            代碼:
            #include <cstdio>
            #include 
            <cstring>
            #include 
            <iostream>
            using namespace std;

            const int mod = 1000000009;
            int dp[1000100];
            int n, top;
            int c[21][21];
            void init()
            {
                
            for (int i = 1; i < 21++i)
                {
                    c[i][
            0= c[i][i]  = 1;
                    c[i][
            1= c[i][i - 1= i;
                    
            for (int j = 2; j < i - 1++j)
                    {
                        c[i][j] 
            = c[i - 1][j] + c[i - 1][j - 1];
                    }
                }
            }

            int work(int n, int top)
            {
                
            if (n > 20return 0;
                
            if (1 << (n - 1> top) return 0;
                top 
            -= 1 << (n - 1);
                memset(dp, 
            0sizeof(dp));
                dp[
            0= 1;
                
            for (int i = 0; i <= n - 1++i)
                {
                    
            for (int k = 0; k <= top; ++k)
                    {
                        
            if ((dp[k] && k + c[n - 1][i] <= top) || k == 0)
                        {
                            dp[k 
            + c[n - 1][i]] = (dp[k + c[n - 1][i]] + dp[k]) % mod;
                        }
                    }
                }
                
            return dp[top];
            }

            int main()
            {
                memset(c, 
            -1sizeof(c));
                init();
                
            while (scanf("%d%d"&n, &top) != EOF)
                {
                    printf(
            "%d\n", work(n ,top));
                }
                
            return 0;
            }

            posted on 2011-10-15 22:15 LLawliet 閱讀(109) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            麻豆精品久久久一区二区| 久久精品成人欧美大片| 久久久久亚洲AV无码观看| 亚洲第一极品精品无码久久| 亚洲级αV无码毛片久久精品| 精品久久久久久亚洲精品| 亚洲精品高清久久| 国产69精品久久久久观看软件| 精品久久久中文字幕人妻| 91精品国产综合久久婷婷| 精品乱码久久久久久夜夜嗨| 色综合久久中文字幕无码| 亚洲国产天堂久久综合网站| 久久人人爽人人爽人人片AV东京热 | 久久精品国产亚洲av高清漫画 | 99久久国产综合精品网成人影院| 国产无套内射久久久国产| 久久亚洲春色中文字幕久久久| 久久久精品人妻无码专区不卡| 99久久er这里只有精品18| 亚洲国产成人久久综合区| 久久99精品国产| 久久久久无码精品国产| 久久精品卫校国产小美女| 日韩久久久久中文字幕人妻| 97久久精品人人做人人爽| 久久精品aⅴ无码中文字字幕不卡 久久精品aⅴ无码中文字字幕重口 | 久久99国产精品尤物| 少妇久久久久久被弄到高潮| 办公室久久精品| 精品久久久久久中文字幕人妻最新| 亚洲日本久久久午夜精品| 久久无码精品一区二区三区| 亚洲狠狠综合久久| 久久中文娱乐网| 99久久精品九九亚洲精品| 国产午夜免费高清久久影院| 国产精品久久久亚洲| 久久人爽人人爽人人片AV | 国产精品毛片久久久久久久| 韩国三级大全久久网站|