• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數(shù)組表示節(jié)點(diǎn)數(shù)為j所能表示最大的數(shù)。
            則第j個(gè)節(jié)點(diǎn)所能表示的數(shù)a[j]符合卡特蘭數(shù):
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個(gè)節(jié)點(diǎn) = 左邊0個(gè)節(jié)點(diǎn)的個(gè)數(shù) * 右邊j - 1個(gè)節(jié)點(diǎn)的個(gè)數(shù) + ...... + 左邊j - 1個(gè)節(jié)點(diǎn)的個(gè)數(shù) * 右邊0個(gè)節(jié)點(diǎn)的個(gè)數(shù)。

            之后根據(jù)讀入的n,判斷出節(jié)點(diǎn)數(shù),在再判斷出左右的節(jié)點(diǎn)數(shù)和左右所代表的數(shù)。
            然后調(diào)用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(431) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 數(shù)論

            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            三级三级久久三级久久| 四虎国产精品免费久久5151| 国产 亚洲 欧美 另类 久久| Xx性欧美肥妇精品久久久久久 | 国内精品久久久久久久涩爱| 亚洲欧美另类日本久久国产真实乱对白 | 久久久无码一区二区三区| 国产精品久久久久久久午夜片| 久久www免费人成精品香蕉| 久久精品人妻中文系列| 色播久久人人爽人人爽人人片aV | 亚洲欧洲精品成人久久奇米网| 香蕉久久夜色精品升级完成| 久久丝袜精品中文字幕| 国产精品久久久久久久久鸭 | 色婷婷噜噜久久国产精品12p| 久久久久久午夜成人影院| 理论片午午伦夜理片久久| 国产精品久久久久久搜索| 日本久久久久亚洲中字幕 | 99蜜桃臀久久久欧美精品网站 | 久久精品成人免费网站| avtt天堂网久久精品| a高清免费毛片久久| 亚洲va久久久噜噜噜久久狠狠| 无码人妻少妇久久中文字幕| 国产精品成人无码久久久久久 | 久久婷婷五月综合成人D啪| 久久精品国产91久久麻豆自制| 久久久久久亚洲Av无码精品专口| 麻豆久久久9性大片| 亚洲欧洲精品成人久久奇米网| 久久国产V一级毛多内射| 99久久精品无码一区二区毛片| 久久久精品久久久久久| 久久91精品国产91久| 免费一级欧美大片久久网| 久久久精品日本一区二区三区| 91精品国产91久久久久久| 国内精品久久久久久久coent | 丁香五月综合久久激情|