• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數組表示節點數為j所能表示最大的數。
            則第j個節點所能表示的數a[j]符合卡特蘭數:
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個節點 = 左邊0個節點的個數 * 右邊j - 1個節點的個數 + ...... + 左邊j - 1個節點的個數 * 右邊0個節點的個數。

            之后根據讀入的n,判斷出節點數,在再判斷出左右的節點數和左右所代表的數。
            然后調用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(420) 評論(0)  編輯 收藏 引用 所屬分類: 數論
            亚洲成人精品久久| 国产综合精品久久亚洲| 亚洲国产成人久久精品99 | 久久人人爽人人爽人人AV | 国产精品一久久香蕉国产线看观看| 亚洲精品白浆高清久久久久久| 久久国产精品成人影院| 国产成人综合久久久久久| 亚洲欧美成人久久综合中文网 | 久久精品国产99国产精偷| 四虎影视久久久免费| 久久99久国产麻精品66| 日韩欧美亚洲综合久久影院d3| 婷婷国产天堂久久综合五月| 丁香五月网久久综合| 中文字幕亚洲综合久久菠萝蜜| 国内精品久久久久影院日本| 天天综合久久一二三区| 色综合久久综合网观看| 伊人久久大香线蕉亚洲| 欧洲性大片xxxxx久久久| 国产精品久久成人影院| 亚洲精品乱码久久久久久久久久久久 | 国产69精品久久久久久人妻精品| 久久er国产精品免费观看2| 精品久久久中文字幕人妻| 久久免费视频6| 国产成人精品久久综合| 精品九九久久国内精品| 国产精品免费福利久久| 人妻精品久久久久中文字幕69| 中文字幕无码久久精品青草| 伊人丁香狠狠色综合久久| 国产精品久久久久久久久鸭| 久久久久久九九99精品| 久久久久99精品成人片直播| 亚洲中文字幕无码久久2017| 亚洲色婷婷综合久久| 一本色道久久综合亚洲精品| 亚洲色婷婷综合久久| 精品久久久久久无码中文字幕一区 |