• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數組表示節點數為j所能表示最大的數。
            則第j個節點所能表示的數a[j]符合卡特蘭數:
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個節點 = 左邊0個節點的個數 * 右邊j - 1個節點的個數 + ...... + 左邊j - 1個節點的個數 * 右邊0個節點的個數。

            之后根據讀入的n,判斷出節點數,在再判斷出左右的節點數和左右所代表的數。
            然后調用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(423) 評論(0)  編輯 收藏 引用 所屬分類: 數論
            久久久一本精品99久久精品66| 2021国产精品午夜久久 | 97精品伊人久久久大香线蕉| 91精品国产综合久久香蕉 | 久久99精品久久久久久齐齐| 亚洲性久久久影院| 国产精品久久自在自线观看| 无码任你躁久久久久久| 久久99热国产这有精品| 狠狠精品久久久无码中文字幕 | 久久天天躁狠狠躁夜夜2020老熟妇| 欧美精品乱码99久久蜜桃| 四虎国产永久免费久久| 亚洲国产另类久久久精品黑人| 狠狠久久综合伊人不卡| 精品久久无码中文字幕| 综合久久久久久中文字幕亚洲国产国产综合一区首 | 亚洲狠狠综合久久| 国产毛片欧美毛片久久久| 久久婷婷五月综合色99啪ak| 99精品久久久久久久婷婷| 91精品国产高清久久久久久io| 久久人人爽人人爽人人片AV不| 久久久久久亚洲精品不卡| 热久久国产精品| 97久久久精品综合88久久| 国产精品99久久久精品无码| 久久综合偷偷噜噜噜色| 久久免费香蕉视频| 国産精品久久久久久久| 色综合合久久天天综合绕视看| 久久国产精品成人免费| 久久成人影院精品777| 久久精品国产只有精品2020| 国产精品视频久久久| 国产AⅤ精品一区二区三区久久| 久久99精品国产99久久| 久久国产精品二国产精品| 久久久久亚洲AV成人网人人软件| 久久99国产精品成人欧美| 欧美久久久久久午夜精品|