• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數(shù)組表示節(jié)點(diǎn)數(shù)為j所能表示最大的數(shù)。
            則第j個(gè)節(jié)點(diǎn)所能表示的數(shù)a[j]符合卡特蘭數(shù):
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個(gè)節(jié)點(diǎn) = 左邊0個(gè)節(jié)點(diǎn)的個(gè)數(shù) * 右邊j - 1個(gè)節(jié)點(diǎn)的個(gè)數(shù) + ...... + 左邊j - 1個(gè)節(jié)點(diǎn)的個(gè)數(shù) * 右邊0個(gè)節(jié)點(diǎn)的個(gè)數(shù)。

            之后根據(jù)讀入的n,判斷出節(jié)點(diǎn)數(shù),在再判斷出左右的節(jié)點(diǎn)數(shù)和左右所代表的數(shù)。
            然后調(diào)用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(420) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 數(shù)論

            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            色99久久久久高潮综合影院| 久久99精品久久久久久不卡 | 色婷婷综合久久久久中文| 久久精品国产色蜜蜜麻豆| 国产精品久久久久久久久鸭| 99久久国产精品免费一区二区 | 亚洲精品无码久久千人斩| 亚洲伊人久久大香线蕉综合图片| 国产69精品久久久久久人妻精品| 亚洲国产精品一区二区久久| 欧洲国产伦久久久久久久| 少妇人妻88久久中文字幕| 国产成人精品久久综合| 精品久久久无码21p发布| 亚洲午夜无码久久久久| 久久国产热这里只有精品| 久久久久综合网久久| 国产精品成人99久久久久91gav| 亚洲精品第一综合99久久 | 国产成人精品综合久久久| 色婷婷狠狠久久综合五月| 久久国产精品无| 国产精品美女久久久久网| 久久精品一区二区影院| 91久久婷婷国产综合精品青草| 久久久午夜精品| 久久久精品日本一区二区三区| 国产成人精品久久一区二区三区| 色老头网站久久网| 久久国产成人| 91亚洲国产成人久久精品| 久久综合国产乱子伦精品免费| 久久综合视频网站| 国产精品一区二区久久精品无码| 久久婷婷五月综合国产尤物app| 香蕉aa三级久久毛片| 久久精品人妻一区二区三区| 久久精品国产亚洲一区二区| 91久久精一区二区三区大全| 国产精品久久一区二区三区| 99久久无码一区人妻a黑|