• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            Slim Span
            Time Limit: 5000MSMemory Limit: 65536K
            Total Submissions: 4023Accepted: 2116

            Description

            Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

            The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

            A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


            Figure 5: A graph G and the weights of the edges

            For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


            Figure 6: Examples of the spanning trees of G

            There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

            Your job is to write a program that computes the smallest slimness.

            Input

            The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

            nm
            a1b1w1
            ambmwm

            Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

            Output

            For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

            Sample Input

            4 5
            1 2 3
            1 3 5
            1 4 6
            2 4 6
            3 4 7
            4 6
            1 2 10
            1 3 100
            1 4 90
            2 3 20
            2 4 80
            3 4 40
            2 1
            1 2 1
            3 0
            3 1
            1 2 1
            3 3
            1 2 2
            2 3 5
            1 3 6
            5 10
            1 2 110
            1 3 120
            1 4 130
            1 5 120
            2 3 110
            2 4 120
            2 5 130
            3 4 120
            3 5 110
            4 5 120
            5 10
            1 2 9384
            1 3 887
            1 4 2778
            1 5 6916
            2 3 7794
            2 4 8336
            2 5 5387
            3 4 493
            3 5 6650
            4 5 1422
            5 8
            1 2 1
            2 3 100
            3 4 100
            4 5 100
            1 5 50
            2 5 50
            3 5 50
            4 1 150
            0 0

            Sample Output

            1
            20
            0
            -1
            -1
            1
            0
            1686
            50

            Source



            題目就是生成一棵樹,要求邊權最大減最小的差最小。
            根據Kruskal思想,把邊排序,之后枚舉一下就行了。

            代碼:

            #include <cmath>
            #include 
            <cstdio>
            #include 
            <cstdlib>
            #include 
            <cstring>
            #include 
            <iostream>
            #include 
            <algorithm>
            using namespace std;

            const int M = 5005;
            const int INF = 1 << 29;

            struct edge
            {
                
            int st, ed, w;
                
            bool operator < (edge a) const
                {
                    
            return w < a.w;
                }
            } e[M];

            int n, m, ans, num, temp;
            int f[105], rank[105];

            void makeset()
            {
                
            for (int i = 1; i <= n; ++i)
                    f[i] 
            = i;
                memset(rank, 
            0sizeof(rank));
            }

            int find(int x)
            {
                
            while (f[x] != x) x = f[x];
                
            return x;
            }

            void unionset(int a, int b)
            {
                
            int p = find(a);
                
            int q = find(b);
                
            if (rank[p] > rank[q])
                    f[q] 
            = p;
                
            else
                
            if (rank[p] < rank[q])
                    f[p] 
            = q;
                
            else
                {
                    f[p] 
            = q;
                    rank[q]
            ++;
                }
            }

            void kruskal()
            {
                ans 
            = INF;
                
            for (int i = 0; i < m - n + 2++i)
                {
                    makeset();
                    temp 
            = -1;
                    num 
            = 0;
                    
            for (int j = i; j < m; ++j)
                    {
                        
            if (find(e[j].st) != find(e[j].ed))
                        {
                            num
            ++;
                            unionset(e[j].st, e[j].ed);
                            
            if (num == n - 1)
                            {
                                temp 
            = e[j].w - e[i].w;
                                
            break;
                            }
                        }
                    }
                    
            if (temp == -1break;
                    
            if (temp != -1 && temp < ans) ans = temp;
                }
                
            if (ans >= INF) printf("-1\n");
                
            else printf("%d\n", ans);
            }

            int main()
            {
                
            while (scanf("%d%d"&n, &m), n || m)
                {
                    
            for (int i = 0; i < m; ++i)
                        scanf(
            "%d%d%d"&e[i].st, &e[i].ed, &e[i].w);
                    sort(e, e 
            + m);
                    kruskal();
                }
                
            return 0;
            }
            posted on 2011-10-17 15:54 LLawliet 閱讀(369) 評論(0)  編輯 收藏 引用 所屬分類: 圖論
            青青草原精品99久久精品66| 九九久久精品无码专区| 亚洲色欲久久久综合网| 99久久国产热无码精品免费| 99热热久久这里只有精品68| 久久午夜免费视频| 久久婷婷久久一区二区三区| 色老头网站久久网| 国产精品免费久久久久电影网| 人妻无码中文久久久久专区| 狠狠色丁香久久婷婷综合五月| 97精品伊人久久大香线蕉| 久久综合亚洲欧美成人| 亚洲精品乱码久久久久久蜜桃| 亚洲欧美日韩精品久久亚洲区| 久久综合狠狠综合久久综合88| 爱做久久久久久| 亚洲AV无码一区东京热久久| 久久精品无码一区二区三区免费| 久久精品国产亚洲AV嫖农村妇女 | 久久久久国产| 久久人人添人人爽添人人片牛牛| 久久99精品九九九久久婷婷| 久久亚洲春色中文字幕久久久| 日韩美女18网站久久精品| 99久久精品国产高清一区二区| 亚洲人成无码久久电影网站| 久久精品成人国产午夜| 久久w5ww成w人免费| 久久综合久久自在自线精品自| 久久99久国产麻精品66| 久久e热在这里只有国产中文精品99| 久久精品国产91久久麻豆自制| 久久久久亚洲AV无码永不| 国产偷久久久精品专区| 久久久久这里只有精品| 青青草国产97免久久费观看| 亚洲国产成人久久综合一区77| 久久精品国产2020| 99精品国产免费久久久久久下载| 久久99精品国产麻豆宅宅|