• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            Slim Span
            Time Limit: 5000MSMemory Limit: 65536K
            Total Submissions: 4023Accepted: 2116

            Description

            Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

            The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

            A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


            Figure 5: A graph G and the weights of the edges

            For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


            Figure 6: Examples of the spanning trees of G

            There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

            Your job is to write a program that computes the smallest slimness.

            Input

            The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

            nm
            a1b1w1
            ambmwm

            Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

            Output

            For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

            Sample Input

            4 5
            1 2 3
            1 3 5
            1 4 6
            2 4 6
            3 4 7
            4 6
            1 2 10
            1 3 100
            1 4 90
            2 3 20
            2 4 80
            3 4 40
            2 1
            1 2 1
            3 0
            3 1
            1 2 1
            3 3
            1 2 2
            2 3 5
            1 3 6
            5 10
            1 2 110
            1 3 120
            1 4 130
            1 5 120
            2 3 110
            2 4 120
            2 5 130
            3 4 120
            3 5 110
            4 5 120
            5 10
            1 2 9384
            1 3 887
            1 4 2778
            1 5 6916
            2 3 7794
            2 4 8336
            2 5 5387
            3 4 493
            3 5 6650
            4 5 1422
            5 8
            1 2 1
            2 3 100
            3 4 100
            4 5 100
            1 5 50
            2 5 50
            3 5 50
            4 1 150
            0 0

            Sample Output

            1
            20
            0
            -1
            -1
            1
            0
            1686
            50

            Source



            題目就是生成一棵樹,要求邊權最大減最小的差最小。
            根據Kruskal思想,把邊排序,之后枚舉一下就行了。

            代碼:

            #include <cmath>
            #include 
            <cstdio>
            #include 
            <cstdlib>
            #include 
            <cstring>
            #include 
            <iostream>
            #include 
            <algorithm>
            using namespace std;

            const int M = 5005;
            const int INF = 1 << 29;

            struct edge
            {
                
            int st, ed, w;
                
            bool operator < (edge a) const
                {
                    
            return w < a.w;
                }
            } e[M];

            int n, m, ans, num, temp;
            int f[105], rank[105];

            void makeset()
            {
                
            for (int i = 1; i <= n; ++i)
                    f[i] 
            = i;
                memset(rank, 
            0sizeof(rank));
            }

            int find(int x)
            {
                
            while (f[x] != x) x = f[x];
                
            return x;
            }

            void unionset(int a, int b)
            {
                
            int p = find(a);
                
            int q = find(b);
                
            if (rank[p] > rank[q])
                    f[q] 
            = p;
                
            else
                
            if (rank[p] < rank[q])
                    f[p] 
            = q;
                
            else
                {
                    f[p] 
            = q;
                    rank[q]
            ++;
                }
            }

            void kruskal()
            {
                ans 
            = INF;
                
            for (int i = 0; i < m - n + 2++i)
                {
                    makeset();
                    temp 
            = -1;
                    num 
            = 0;
                    
            for (int j = i; j < m; ++j)
                    {
                        
            if (find(e[j].st) != find(e[j].ed))
                        {
                            num
            ++;
                            unionset(e[j].st, e[j].ed);
                            
            if (num == n - 1)
                            {
                                temp 
            = e[j].w - e[i].w;
                                
            break;
                            }
                        }
                    }
                    
            if (temp == -1break;
                    
            if (temp != -1 && temp < ans) ans = temp;
                }
                
            if (ans >= INF) printf("-1\n");
                
            else printf("%d\n", ans);
            }

            int main()
            {
                
            while (scanf("%d%d"&n, &m), n || m)
                {
                    
            for (int i = 0; i < m; ++i)
                        scanf(
            "%d%d%d"&e[i].st, &e[i].ed, &e[i].w);
                    sort(e, e 
            + m);
                    kruskal();
                }
                
            return 0;
            }
            posted on 2011-10-17 15:54 LLawliet 閱讀(369) 評論(0)  編輯 收藏 引用 所屬分類: 圖論
            一本色综合久久| 99久久夜色精品国产网站| 久久WWW免费人成一看片| 男女久久久国产一区二区三区| 久久福利青草精品资源站免费 | 亚洲色大成网站www久久九| 97久久超碰国产精品旧版| 久久久青草青青国产亚洲免观| 久久无码国产专区精品| 91精品久久久久久无码| 久久久久人妻精品一区| 合区精品久久久中文字幕一区| AV无码久久久久不卡蜜桃| 久久久久久久精品成人热色戒| 一级做a爰片久久毛片16| 无码人妻精品一区二区三区久久久 | 人妻无码αv中文字幕久久琪琪布| yellow中文字幕久久网| 久久久噜噜噜久久中文福利| 青青草原综合久久大伊人导航| 久久综合综合久久狠狠狠97色88 | 久久精品麻豆日日躁夜夜躁| 麻豆国内精品久久久久久| 久久综合九色综合97_久久久| 久久精品国产清高在天天线| 国产精品久久婷婷六月丁香| 久久婷婷是五月综合色狠狠| 久久综合狠狠综合久久| 久久国产成人午夜aⅴ影院| 久久超乳爆乳中文字幕| 久久久久久国产精品免费无码| 国内精品久久久久久久久电影网 | 国产欧美久久久精品| 久久精品无码一区二区WWW| 青青草原综合久久大伊人| 久久成人小视频| 亚洲成色WWW久久网站| 久久精品九九亚洲精品| 伊人久久综在合线亚洲2019| 国产高潮久久免费观看| 久久无码国产|