• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 195,  comments - 30,  trackbacks - 0

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

             

             

            V A S E S

             

             

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers.

            ASSUMPTIONS

            1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F. F ≤ V ≤ 100 where V is the number of vases. -50 ≤ Aij ≤ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Input

            The first line contains two numbers: F and V.

            The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

            Notice: The input contains several test cases.

            Output

            The output line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            這題可以用搜索過,但是還可以用dp
            用result[i][j]表示前i行,以j結尾的排法的最大值,
            rsult[1][j]直接初始化為num[i][j];其余初始化為負無窮
            dp的過程就是
                for(i=2;i<-r;i++)//行逐漸增加
                      for(j=i;j<=c;j++)//列必須大于等于行號,否則無法保證從左上方到右下方
                                for(k=1;k<j;k++)
                                           if(result[i][j]<result[i-1][k]+num[i][j])//無需擔心不是從左上方到右下方,因為若i<j,result[][]賦為了負無窮
                                                           result[i][j]=result[i-1][k]+num[i][j]
            更詳細的代碼可以到蘇強的博客http://download.csdn.net/user/china8848/獲得
            posted on 2009-07-14 10:05 luis 閱讀(251) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            常用鏈接

            留言簿(3)

            隨筆分類

            隨筆檔案

            文章分類

            文章檔案

            友情鏈接

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            久久一日本道色综合久久| 亚洲AV乱码久久精品蜜桃| 精品久久久久久99人妻| 日韩美女18网站久久精品| 亚洲国产成人精品女人久久久| 国产99久久久国产精品小说| 久久综合精品国产二区无码| 久久av高潮av无码av喷吹| 久久人人爽人人爽人人爽| 日韩精品国产自在久久现线拍| 看全色黄大色大片免费久久久| 国产精品国色综合久久| 久久精品国产只有精品66| 久久国产精品一国产精品金尊| 国产免费久久精品丫丫| 久久精品中文无码资源站| 亚洲国产成人乱码精品女人久久久不卡 | 久久噜噜电影你懂的| 国内精品久久久久影院薰衣草 | 久久人与动人物a级毛片| 久久精品国产精品亚洲人人 | 久久精品国产精品国产精品污 | 久久精品九九亚洲精品| 伊人久久大香线蕉无码麻豆 | 91精品国产色综久久| 久久精品国产亚洲AV大全| 一本色道久久综合狠狠躁| 久久久高清免费视频| 性做久久久久久久久| 久久久久无码专区亚洲av| 久久高清一级毛片| 久久精品国产一区二区电影| 国产精品内射久久久久欢欢 | 久久影院午夜理论片无码 | 精品久久久久久无码中文字幕一区 | 久久香蕉一级毛片| 青青草原综合久久| 欧美午夜精品久久久久久浪潮| 午夜精品久久久内射近拍高清| 久久人妻少妇嫩草AV无码蜜桃 | 久久国产精品免费|