• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 195,  comments - 30,  trackbacks - 0

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

             

             

            V A S E S

             

             

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7

            23

            -5

            -24

            16

            2 (begonias)

            5

            21

            -4

            10

            23

            3 (carnations)

            -21

            5

            -4

            -20

            20

             

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers.

            ASSUMPTIONS

            1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F. F ≤ V ≤ 100 where V is the number of vases. -50 ≤ Aij ≤ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Input

            The first line contains two numbers: F and V.

            The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

            Notice: The input contains several test cases.

            Output

            The output line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            這題可以用搜索過,但是還可以用dp
            用result[i][j]表示前i行,以j結尾的排法的最大值,
            rsult[1][j]直接初始化為num[i][j];其余初始化為負無窮
            dp的過程就是
                for(i=2;i<-r;i++)//行逐漸增加
                      for(j=i;j<=c;j++)//列必須大于等于行號,否則無法保證從左上方到右下方
                                for(k=1;k<j;k++)
                                           if(result[i][j]<result[i-1][k]+num[i][j])//無需擔心不是從左上方到右下方,因為若i<j,result[][]賦為了負無窮
                                                           result[i][j]=result[i-1][k]+num[i][j]
            更詳細的代碼可以到蘇強的博客http://download.csdn.net/user/china8848/獲得
            posted on 2009-07-14 10:05 luis 閱讀(251) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            常用鏈接

            留言簿(3)

            隨筆分類

            隨筆檔案

            文章分類

            文章檔案

            友情鏈接

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

            中文字幕亚洲综合久久| 久久丝袜精品中文字幕| 久久99精品久久久久婷婷| 久久亚洲精品成人AV| 国内精品久久久久久久久电影网| 伊人久久大香线蕉精品不卡| 99久久精品费精品国产一区二区| 亚洲国产精品成人久久蜜臀| 99久久久精品| 99久久国产精品免费一区二区| 国产精品VIDEOSSEX久久发布 | 久久成人18免费网站| 亚洲精品乱码久久久久久久久久久久 | 99久久国产综合精品成人影院| 久久无码中文字幕东京热| 国产日韩欧美久久| 国产精品一区二区久久国产| 亚洲精品99久久久久中文字幕| 欧美日韩中文字幕久久伊人| 久久天天躁狠狠躁夜夜躁2O2O| 欧美亚洲国产精品久久| 久久久91人妻无码精品蜜桃HD| 久久精品国产亚洲综合色| 97久久精品无码一区二区| 亚洲精品乱码久久久久久中文字幕| 欧美亚洲另类久久综合婷婷 | 久久精品女人天堂AV麻| 99久久中文字幕| 久久99精品国产99久久| 久久综合亚洲欧美成人| 婷婷五月深深久久精品| 99久久99久久精品国产片果冻| 日本欧美久久久久免费播放网| 99久久精品国产综合一区| 婷婷国产天堂久久综合五月| 热re99久久6国产精品免费| 国产色综合久久无码有码| 免费久久人人爽人人爽av| 国产精品视频久久| 人妻精品久久无码区| 怡红院日本一道日本久久 |