• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            雁過無痕

              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::

            《編程之美》讀書筆記08:2.9 Fibonacci序列

            計算Fibonacci序列最直接的方法就是利用遞推公式 F(n+2)=F(n+1)+F(n)。而用通項公式來求解是錯誤的,用浮點數(shù)表示無理數(shù)本來就有誤差,經(jīng)過n次方后,當n相當大時,誤差能足夠大到影響浮點數(shù)轉為整數(shù)時的精度,得到的結果根本不準。

            用矩陣來計算,雖然時間復雜度降到O(log n),但要用到矩陣類,相當麻煩。觀察:

            F(n+2)=F(n)+F(n-1)2*F(n-1)+F(n-2)=3*F(n-2)+2*F(n-4)

            用歸納法很容易證明 F(n) = F(k)*F(n+1-k) + F(k-1)*F(n-k),利用該遞推公式和原遞推公式,要計算F(n),只要計算F([n/2])F([n/2]+1),時間復雜度為 O(lg n)。如:要計算F(58),由 58 -> 29,30 -> 14,15 -> 7,8 -> 3,4 -> 1,2 可知只要算5次。可以用一個棧保存要計算的數(shù),實際上,將n的最高位1(假設在第k位)左邊的0去除掉后,第m次要計算的數(shù)是第k位到第k-m+1位這m個位組成的值t(m),則第m-1次要計算的數(shù)為t(m-1),且

            t(m)=2*t(m-1)+(k-m+1位是否為1)。

            若第m-1次計算得到了f(k)f(k+1),則第m次計算:

             

            k-m+1

            已計算

            待計算

            1

            f(k)

            f(k+1)

            f(2*k+1),f(2*k+2)

            0

            f(2*k),f(2*k+1)

             

            具體公式見下面代碼。

            下面是計算F(n)最后四位數(shù)(某道ACM題)的代碼。


             

            /*   Fibonacci數(shù)列第N個數(shù)的最后4位數(shù)
                注意,當 N>93 時 第N個數(shù)的值超過64位無符號整數(shù)可表示的范圍。
            F(n+2)=F(n)+F(n-1) F(0)=0 F(1)=1  F(2)=1        ==>
            F(n)=F(k)*F(n+1-k) + F(k-1)*F(n-k)              ==>
            F(2*n)=F(n+1)*F(n)+F(n)*F(n-1)=(F(n+1)+F(n-1))*F(n)=(F(n+1)*2-F(n))*F(n)
            F(2*n+1)=F(n+1)*F(n+1)+F(n)*F(n)
            F(2*n+2)=F(n+2)*F(n+1)+F(n+1)*F(n)=(F(n+2)+F(n))*F(n+1)=(F(n+1)+F(n)*2)*F(n+1)
             
            */

            unsigned fib_last4( unsigned num)
            {
              
            if ( num == 0 ) return 0;
              
            const unsigned M=10000;
              unsigned ret
            =1,next=1,ret_=ret;
              unsigned flag
            =1, tt=num;
              
            while ( tt >>= 1) flag <<= 1;
              
            while ( flag >>= 1 ){
                
            if ( num & flag ){
                  ret_ 
            = ret * ret + next * next;
                  next 
            = (ret + ret + next) * next;
                } 
            else {
                  
            //多加一個M,避免 2*next-ret是負數(shù),造成結果不對
                  ret_ = (next + next + M - ret) * ret;
                  next 
            = ret * ret + next * next;
                }
                ret 
            = ret_ % M;
                next 
            = next % M;
              }
              
            return ret;
            }


             



            posted on 2010-06-23 23:28 flyinghearts 閱讀(4734) 評論(11)  編輯 收藏 引用 所屬分類: 算法 、編程之美

            評論

            # re: O(log n)求Fibonacci數(shù)列(非矩陣法)[未登錄] 2010-07-16 11:18 Klion
            你好,這篇文章下面這段文字“實際上,將n的最高位1(假設在第k位)左邊的0去除掉后,第m次要計算的數(shù)是第k位到第k-m+1位這m個位組成的值t(m),則第m-1次要計算的數(shù)為t(m-1),且t(m)=2*t(m-1)+(第k-m+1位是否為1)。若第m-1次計算得到了f(k)和f(k+1),則第m次計算:”
            不是看的很懂,希望博主給解釋下。
            主要有以下幾點疑問:1.那個最高位左邊的是比最高位高的位還是低的位。
            2.那個t(m)怎么算的  回復  更多評論
              

            # re: O(log n)求Fibonacci數(shù)列(非矩陣法) 2010-07-18 05:16 dissertation service
            A lot of years good people would like to order good enough history dissertation referring to this good post from the dissertation writing services. Can you in case suggest the experienced thesis writing services? Thanks a lot.   回復  更多評論
              

            # re: O(log n)求Fibonacci數(shù)列(非矩陣法) 2010-07-21 00:35 flyinghearts
            @Klion

            以58為例其二進制表示(最左邊的0省略)為:
              11 1010
            t(1) 1
            t(2) 11
            t(3) 11 1
            t(4) 11 10
            t(5) 11 101
            t(6) 11 1010

            即:
            t(1)?。健?
            t(2)?。健?
            t(3)?。健?
            t(4)?。健?4
            t(5)?。健?9
            t(6)?。健?8

              回復  更多評論
              

            # re: O(log n)求Fibonacci數(shù)列(非矩陣法)[未登錄] 2010-07-26 11:40 Klion
            @flyinghearts
            恩,謝謝了。后來我自己也動手劃了下,原來我一開始沒理解到,現(xiàn)在我知道那個t(m)怎么算的,也用自己的理解寫了點求出這個是干嘛的。
            我理解的就是這個t(m)其實就是一個逆向工程,先是判斷右移(m-1)位之后的情況,看這個數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù)就由哪兩個數(shù)得來,如果是偶數(shù),就由哪兩個數(shù)得來,由這個可以得到我們要算的結果是算出來的這兩個中的小者。  回復  更多評論
              

            # re: O(log n)求Fibonacci數(shù)列(非矩陣法) 2010-08-02 23:34 flyinghearts
            @Klion
            58 -> 29 -> 14 -> 7 -> 3 -> 1
            t(i)就是這個倒過來。
            要計算 F(t(i)) 就要判斷 t(i) 是 t(i-1)的2倍,還是2倍加1
            (實際上,t(i)沒必要計算,只要判斷第k-m+1位是否為1就可以了。)
            根據(jù)這兩個情況,決定使用那幾個公式。


            我最初的代碼,就是用一個棧,保存n每次右移1位的結果,
            最后根據(jù)棧頂是否是奇數(shù),來決定調(diào)用那兩個公式,出棧。
            反復至棧為空。



              回復  更多評論
              

            # re: 《編程之美》讀書筆記08:2.9 Fibonacci序列 —— O(log n)求Fibonacci數(shù)列(非矩陣法)[未登錄] 2010-10-06 05:47 april
            謝謝帖主的分享,不過code算出來的結果是錯的,貼主有測試過嗎?
            遞推公式 F(n+2)=F(n)+F(n-1) 是錯的
            正確的是 F(n+1)=F(n)+F(n-1), 我想這是為什么算出來的結果不是F(n), 而是F(n-1).
              回復  更多評論
              

            # re: 《編程之美》讀書筆記08:2.9 Fibonacci序列 —— O(log n)求Fibonacci數(shù)列(非矩陣法)[未登錄] 2010-10-06 06:01 april
            @april
            收回我的評論,雖然遞推公式寫錯(typo),但是code返回結果正確。。  回復  更多評論
              

            # re: 《編程之美》讀書筆記08:2.9 Fibonacci序列 —— O(log n)求Fibonacci數(shù)列(非矩陣法) 2010-12-02 23:34 flyinghearts
            @april
            確實把公式打錯了:
            F(n+2)=F(n)+F(n-1) 應該是 F(n+1) = F(n) + F(n-1)
            不過后面的公式推導沒問題。

              回復  更多評論
              

            # re: 《編程之美》讀書筆記08:2.9 Fibonacci序列 —— O(log n)求Fibonacci數(shù)列(非矩陣法) 2012-09-03 10:26
            不過實測的結果:是matrix版(O(logn))最快,去遞歸的(bottom-up)版(O(n))次之,然后是這個版本(O(logn)),可能是乘法的緣故  回復  更多評論
              

            # re: 《編程之美》讀書筆記08:2.9 Fibonacci序列 —— O(log n)求Fibonacci數(shù)列(非矩陣法) 2013-04-26 23:21 card323
            我寫了一篇文章 ggboom.com/2013/04/26/ologn%E6%B1%82%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91fibonacci%E6%95%B0%E5%88%97/
            歡迎拍磚  回復  更多評論
              

            # re: 《編程之美》讀書筆記08:2.9 Fibonacci序列 —— O(log n)求Fibonacci數(shù)列(非矩陣法) 2013-04-26 23:23 card323
            @黃
            試試我的算法:
            ggboom.com/2013/04/26/ologn%E6%B1%82%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91fibonacci%E6%95%B0%E5%88%97/  回復  更多評論
              

            久久久久亚洲av无码专区导航| 国产免费久久精品丫丫| 精品久久久久中文字幕一区| 国内精品久久久久久久97牛牛 | 五月丁香综合激情六月久久 | 久久久国产乱子伦精品作者| 99久久精品免费看国产一区二区三区 | 精品一二三区久久aaa片| 久久久久久久免费视频| 久久精品青青草原伊人| 无码任你躁久久久久久| 亚洲午夜精品久久久久久app| 无码人妻久久一区二区三区蜜桃| 无码国内精品久久人妻麻豆按摩| 午夜精品久久久久| 色欲综合久久躁天天躁蜜桃| 国产精品久久久久国产A级| 久久久综合九色合综国产| 国产精品成人精品久久久| 久久久久久A亚洲欧洲AV冫| 中文字幕亚洲综合久久菠萝蜜| 国产精品久久久香蕉| 热re99久久精品国99热| 国内精品伊人久久久久av一坑| 99久久99久久精品国产片果冻| 久久国产精品免费一区二区三区 | 久久久久久噜噜精品免费直播| 人妻丰满?V无码久久不卡| 久久免费视频1| 国产亚洲欧美精品久久久| 91精品国产高清久久久久久91| 亚洲欧洲精品成人久久奇米网| 久久国产色AV免费看| 久久这里只有精品视频99| 久久久一本精品99久久精品66| 久久精品国产亚洲Aⅴ香蕉| 一本色道久久99一综合| 久久精品国产99久久香蕉| 久久久精品2019免费观看| 亚洲国产成人久久综合碰| 中文字幕一区二区三区久久网站|