• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            C++研究

            C++細(xì)節(jié)深度探索及軟件工程

              C++博客 :: 首頁(yè) :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              37 隨筆 :: 0 文章 :: 74 評(píng)論 :: 0 Trackbacks


            1.GRIDDLE METHOD (ALSO CALLED SIFT METHOD)

            When I was a student in Bachelor phrase , a teacher has tought me a method called griddle method , it's principle is:

            if a number can be devided by another number(except 1) , it isn't a prime , so , we set the non-prime at zero. after all number [In fact , half of the range checked is OK ]test finished , We simply output the NON-ZERO number , it 's the prime table in the RANGE.

            E.G
            Define the Range from 1-100;

            /********************************************************************
             created: 2007/04/19
             created: 19:4:2007   3:00
             filename:  C:\testvc6\TestStll\TestStll.cpp
             file path: C:\testvc6\TestStll
             file base: TestStll
             file ext: cpp
             author:  Chang xinglong(King.C)
             purpose: Print Prime Table in RANGE(1-100)
            *********************************************************************/

            The Code Here :

             


            #include 
            <iostream>
            #include 
            <algorithm>
            #include 
            <vector>
            using namespace std;

            void InitArray(int A[] ,int len)
            {
                
            for (int i=0;i<len;i++)
                
            {
                    A[i]
            =i+1;
                }

            }


            void OutputPrime(int A[] ,int len)
            {
              
            for (int i=2;i<len;i++)
              
            {
                  
            for (int j=2;i*j<=len;j++)
                  
            {
                      A[i
            *j-1]=0;
                      cout
            <<i<<","<<j<<","<<i*j<<endl;
                  }

                 
              }

              
            for (i=0;i<len;i++)
              
            {
                  
            if (A[i]!=0)
                  
            {
                      cout
            <<A[i]<<" ";
                  }

                  
              }

              cout
            <<endl;
            }

            // Main Method [4/19/2007 Changxinglong (King.C)]
            int main(int argc, char* argv[])
            {
                
            int A[100];
                InitArray(A,
            100);
                OutputPrime(A,
            100);
                
            return 1;
            }




             2.THE DIRECT METHOD

            E.G

            /********************************************************************
             created: 2007/04/19
             created: 19:4:2007   3:00
             filename:  C:\testvc6\TestStll\TestStll.cpp
             file path: C:\testvc6\TestStll
             file base: TestStll
             file ext: cpp
             author:  Chang xinglong(King.C)
             purpose: Prime ?
            *********************************************************************/

            Here is the Kernel Function(Quote : STL TURORIAL REFERRENCE):

             

             1//predicate, which returns whether an integer is a prime number
             2bool isPrime (int number)
             3{
             4//ignore negative sign
             5number = abs(number);
             6// 0 and 1 are prime numbers
             7if (number == 0 || number == 1{
             8return true;
             9}

            10//find divisor that divides without a remainder
            11int divisor;
            12for (divisor = number/2; number%divisor != 0--divisor) {
            13;
            14}

            15//if no divisor greater than 1 is found, it is a prime number
            16return divisor == 1;
            17}


            In Main Function , traverse the given range judge every number use the above function:

            int main(int argc , char * argv[])
            {
              
            int A[100];
              InitArray(A,
            100);
              
            for(int i=0;i<100;i++)
                
            if(isPrime(A[i]))
                   cout
            <<A[i]<<endl;
            }

            3. Extention
             Further , if  there is a given List or Vector and it's filled with data , how can you find the prime number in the data effiectly ?
            STL Algorithm can help you indeed. After the step two , we can write a few code to implement the function:
            int main()
            {
            list
            <int> coll;
            //insert elements from 1 to 100
            for (int i=1; i<=100++i) {
            coll.push_back(i);
            }

            //search for prime number
            list<int>::iterator pos;
            pos 
            = find_if (coll.begin(), coll.end(), //range
            isPrime); //predicate
            if (pos != coll.end()) {
            //found
            cout << *pos << " is first prime number found" << endl;
            }

            else {
            //not found
            cout << "no prime number found" << endl;
            }

            }


            posted on 2007-04-19 03:05 常興龍 閱讀(1357) 評(píng)論(8)  編輯 收藏 引用 所屬分類: Algorithm

            評(píng)論

            # re: Some algorithms about judging a prime . 2007-04-19 10:58 uglystone
            Write well!
            I think tha IsPrime funtion shoule be implemented as a functors!
            it may be more elegant!
            class IsPrime{
            public:
            IsPrime(){
            }
            bool isPrime (int number)
            {
            .....
            }
            };  回復(fù)  更多評(píng)論
              

            # re: Some algorithms about judging a prime . 2007-04-19 22:18 chenger
            這應(yīng)該是最原始的辦法  回復(fù)  更多評(píng)論
              

            # re: Some algorithms about judging a prime . 2007-04-26 19:00 oyjpart
            有一些很好的隨機(jī)算法  回復(fù)  更多評(píng)論
              

            # re: Some algorithms about judging a prime . 2007-05-12 23:26 不是很懂
            A primality test is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is known as prime factorization).

            Primality tests come in two varieties: deterministic and probabilistic. Deterministic tests determine with absolute certainty whether a number is prime. Examples of deterministic tests include the Lucas-Lehmer test and elliptic curve primality proving. Probabilistic tests can potentially (although with very small probability) falsely identify a composite number as prime (although not vice versa). However, they are in general much faster than deterministic tests. Numbers that have passed a probabilistic prime test are therefore properly referred to as probable primes until their primality can be demonstrated deterministically.

            A number that passes a probabilistic test but is in fact composite is known as a pseudoprime. There are many specific types of pseudoprimes, the most common being the Fermat pseudoprimes, which are composites that nonetheless satisfy Fermat's little theorem.

            The Rabin-Miller strong pseudoprime test is a particularly efficient test. Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test used by the function PrimeQ[n]. Like many such algorithms, it is a probabilistic test using pseudoprimes. In order to guarantee primality, a much slower deterministic algorithm must be used. However, no numbers are actually known that pass advanced probabilistic tests (such as Rabin-Miller) yet are actually composite.

            The state of the art in deterministic primality testing for arbitrary numbers is elliptic curve primality proving. As of 2004, the program PRIMO can certify a 4769-digit prime in approximately 2000 hours of computation (or nearly three months of uninterrupted computation) on a 1 GHz processor using this technique.

            Unlike prime factorization, primality testing was long believed to be a P-problem (Wagon 1991). This had not been demonstrated, however, until Agrawal et al. (2002) unexpectedly discovered a polynomial time algorithm for primality testing that has asymptotic complexity of (Bernstein 2002, Clark 2002, Indian Institute of Technology 2002, Pomerance 2002ab, Robinson 2002). Their algorithm has come to be called the AKS primality test.

            http://mathworld.wolfram.com/PrimalityTest.html  回復(fù)  更多評(píng)論
              

            # re: Some algorithms about judging a prime . 2007-05-17 00:12 天津大學(xué)計(jì)算機(jī)學(xué)院 常興龍
            Very appreciated for your comment , I have benefited a lot from it. thanks again!  回復(fù)  更多評(píng)論
              

            # re: Some algorithms about judging a prime . 2008-04-24 02:01 Rex.Kingsir
            Thanks a lot for talk so much!  回復(fù)  更多評(píng)論
              

            # re: Some algorithms about judging a prime . 2008-07-05 16:45 我們一起來提高
            數(shù)論學(xué)家利用費(fèi)馬小定理研究出了多種素?cái)?shù)測(cè)試方法,目前最快的算法是拉賓米
            勒測(cè)試算法,其過程如下:
            (1)計(jì)算奇數(shù)M,使得N=(2**r)*M+1
            (2)選擇隨機(jī)數(shù)A<N
            (3)對(duì)于任意i<r,若A**((2**i)*M) MOD N = N-1,則N通過隨機(jī)數(shù)A的測(cè)試
            (4)或者,若A**M MOD N = 1,則N通過隨機(jī)數(shù)A的測(cè)試
            (5)讓A取不同的值對(duì)N進(jìn)行5次測(cè)試,若全部通過則判定N為素?cái)?shù)
            若N 通過一次測(cè)試,則N 不是素?cái)?shù)的概率為 25%,若N 通過t 次測(cè)試,則N 不是
            素?cái)?shù)的概率為1/4**t。事實(shí)上取t 為5 時(shí),N 不是素?cái)?shù)的概率為 1/128,N 為素?cái)?shù)的
            概率已經(jīng)大于99.99%。
            在實(shí)際應(yīng)用中,可首先用300—500個(gè)小素?cái)?shù)對(duì)N 進(jìn)行測(cè)試,以提高拉賓米勒測(cè)試
            通過的概率,從而提高測(cè)試速度。而在生成隨機(jī)素?cái)?shù)時(shí),選取的隨機(jī)數(shù)最好讓 r=0,
            則可省去步驟(3) 的測(cè)試,進(jìn)一步提高測(cè)試速度
              回復(fù)  更多評(píng)論
              

            # re: Some algorithms about judging a prime . 2009-05-16 19:29 u2u
            @我們一起來提高
            現(xiàn)在最快的是AKS...  回復(fù)  更多評(píng)論
              

            > hi的博客
            国产亚洲精午夜久久久久久| 久久天天躁狠狠躁夜夜2020一| 久久精品国产69国产精品亚洲| 国内精品欧美久久精品| 亚洲欧美日韩精品久久亚洲区| 漂亮人妻被黑人久久精品| 国产成人精品久久一区二区三区 | 亚洲国产成人精品无码久久久久久综合| 久久黄视频| 精品无码久久久久久午夜| 久久精品成人免费国产片小草| 国产精品99久久久精品无码| 激情综合色综合久久综合| 久久久国产精品亚洲一区| 久久精品极品盛宴观看| 久久精品国产精品亚洲精品| 77777亚洲午夜久久多喷| 蜜臀久久99精品久久久久久| 国产91色综合久久免费| 亚洲va久久久噜噜噜久久男同 | 国内精品久久九九国产精品| 精品综合久久久久久98| 久久99精品久久久久久噜噜| 久久久中文字幕| 91精品观看91久久久久久| 大伊人青草狠狠久久| 国产成人久久精品区一区二区| 亚洲国产精品久久电影欧美| 欧美国产成人久久精品| 日本国产精品久久| 亚洲精品国产综合久久一线| 久久亚洲电影| 热综合一本伊人久久精品| 色偷偷91久久综合噜噜噜噜| 狠狠色丁香久久婷婷综合_中| 色婷婷久久久SWAG精品| 一本久道久久综合狠狠躁AV | 亚洲AV日韩AV永久无码久久| 久久久亚洲裙底偷窥综合| 久久久久久久久久久久久久| 久久精品一本到99热免费|