青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

C++研究

C++細節(jié)深度探索及軟件工程

  C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
  37 隨筆 :: 0 文章 :: 74 評論 :: 0 Trackbacks


1.GRIDDLE METHOD (ALSO CALLED SIFT METHOD)

When I was a student in Bachelor phrase , a teacher has tought me a method called griddle method , it's principle is:

if a number can be devided by another number(except 1) , it isn't a prime , so , we set the non-prime at zero. after all number [In fact , half of the range checked is OK ]test finished , We simply output the NON-ZERO number , it 's the prime table in the RANGE.

E.G
Define the Range from 1-100;

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Print Prime Table in RANGE(1-100)
*********************************************************************/

The Code Here :

 


#include 
<iostream>
#include 
<algorithm>
#include 
<vector>
using namespace std;

void InitArray(int A[] ,int len)
{
    
for (int i=0;i<len;i++)
    
{
        A[i]
=i+1;
    }

}


void OutputPrime(int A[] ,int len)
{
  
for (int i=2;i<len;i++)
  
{
      
for (int j=2;i*j<=len;j++)
      
{
          A[i
*j-1]=0;
          cout
<<i<<","<<j<<","<<i*j<<endl;
      }

     
  }

  
for (i=0;i<len;i++)
  
{
      
if (A[i]!=0)
      
{
          cout
<<A[i]<<" ";
      }

      
  }

  cout
<<endl;
}

// Main Method [4/19/2007 Changxinglong (King.C)]
int main(int argc, char* argv[])
{
    
int A[100];
    InitArray(A,
100);
    OutputPrime(A,
100);
    
return 1;
}




 2.THE DIRECT METHOD

E.G

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Prime ?
*********************************************************************/

Here is the Kernel Function(Quote : STL TURORIAL REFERRENCE):

 

 1//predicate, which returns whether an integer is a prime number
 2bool isPrime (int number)
 3{
 4//ignore negative sign
 5number = abs(number);
 6// 0 and 1 are prime numbers
 7if (number == 0 || number == 1{
 8return true;
 9}

10//find divisor that divides without a remainder
11int divisor;
12for (divisor = number/2; number%divisor != 0--divisor) {
13;
14}

15//if no divisor greater than 1 is found, it is a prime number
16return divisor == 1;
17}


In Main Function , traverse the given range judge every number use the above function:

int main(int argc , char * argv[])
{
  
int A[100];
  InitArray(A,
100);
  
for(int i=0;i<100;i++)
    
if(isPrime(A[i]))
       cout
<<A[i]<<endl;
}

3. Extention
 Further , if  there is a given List or Vector and it's filled with data , how can you find the prime number in the data effiectly ?
STL Algorithm can help you indeed. After the step two , we can write a few code to implement the function:
int main()
{
list
<int> coll;
//insert elements from 1 to 100
for (int i=1; i<=100++i) {
coll.push_back(i);
}

//search for prime number
list<int>::iterator pos;
pos 
= find_if (coll.begin(), coll.end(), //range
isPrime); //predicate
if (pos != coll.end()) {
//found
cout << *pos << " is first prime number found" << endl;
}

else {
//not found
cout << "no prime number found" << endl;
}

}


posted on 2007-04-19 03:05 常興龍 閱讀(1361) 評論(8)  編輯 收藏 引用 所屬分類: Algorithm

評論

# re: Some algorithms about judging a prime . 2007-04-19 10:58 uglystone
Write well!
I think tha IsPrime funtion shoule be implemented as a functors!
it may be more elegant!
class IsPrime{
public:
IsPrime(){
}
bool isPrime (int number)
{
.....
}
};  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-19 22:18 chenger
這應(yīng)該是最原始的辦法  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-26 19:00 oyjpart
有一些很好的隨機算法  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-12 23:26 不是很懂
A primality test is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is known as prime factorization).

Primality tests come in two varieties: deterministic and probabilistic. Deterministic tests determine with absolute certainty whether a number is prime. Examples of deterministic tests include the Lucas-Lehmer test and elliptic curve primality proving. Probabilistic tests can potentially (although with very small probability) falsely identify a composite number as prime (although not vice versa). However, they are in general much faster than deterministic tests. Numbers that have passed a probabilistic prime test are therefore properly referred to as probable primes until their primality can be demonstrated deterministically.

A number that passes a probabilistic test but is in fact composite is known as a pseudoprime. There are many specific types of pseudoprimes, the most common being the Fermat pseudoprimes, which are composites that nonetheless satisfy Fermat's little theorem.

The Rabin-Miller strong pseudoprime test is a particularly efficient test. Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test used by the function PrimeQ[n]. Like many such algorithms, it is a probabilistic test using pseudoprimes. In order to guarantee primality, a much slower deterministic algorithm must be used. However, no numbers are actually known that pass advanced probabilistic tests (such as Rabin-Miller) yet are actually composite.

The state of the art in deterministic primality testing for arbitrary numbers is elliptic curve primality proving. As of 2004, the program PRIMO can certify a 4769-digit prime in approximately 2000 hours of computation (or nearly three months of uninterrupted computation) on a 1 GHz processor using this technique.

Unlike prime factorization, primality testing was long believed to be a P-problem (Wagon 1991). This had not been demonstrated, however, until Agrawal et al. (2002) unexpectedly discovered a polynomial time algorithm for primality testing that has asymptotic complexity of (Bernstein 2002, Clark 2002, Indian Institute of Technology 2002, Pomerance 2002ab, Robinson 2002). Their algorithm has come to be called the AKS primality test.

http://mathworld.wolfram.com/PrimalityTest.html  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-17 00:12 天津大學(xué)計算機學(xué)院 常興龍
Very appreciated for your comment , I have benefited a lot from it. thanks again!  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2008-04-24 02:01 Rex.Kingsir
Thanks a lot for talk so much!  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2008-07-05 16:45 我們一起來提高
數(shù)論學(xué)家利用費馬小定理研究出了多種素數(shù)測試方法,目前最快的算法是拉賓米
勒測試算法,其過程如下:
(1)計算奇數(shù)M,使得N=(2**r)*M+1
(2)選擇隨機數(shù)A<N
(3)對于任意i<r,若A**((2**i)*M) MOD N = N-1,則N通過隨機數(shù)A的測試
(4)或者,若A**M MOD N = 1,則N通過隨機數(shù)A的測試
(5)讓A取不同的值對N進行5次測試,若全部通過則判定N為素數(shù)
若N 通過一次測試,則N 不是素數(shù)的概率為 25%,若N 通過t 次測試,則N 不是
素數(shù)的概率為1/4**t。事實上取t 為5 時,N 不是素數(shù)的概率為 1/128,N 為素數(shù)的
概率已經(jīng)大于99.99%。
在實際應(yīng)用中,可首先用300—500個小素數(shù)對N 進行測試,以提高拉賓米勒測試
通過的概率,從而提高測試速度。而在生成隨機素數(shù)時,選取的隨機數(shù)最好讓 r=0,
則可省去步驟(3) 的測試,進一步提高測試速度
  回復(fù)  更多評論
  

# re: Some algorithms about judging a prime . 2009-05-16 19:29 u2u
@我們一起來提高
現(xiàn)在最快的是AKS...  回復(fù)  更多評論
  

> hi的博客
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            性欧美暴力猛交69hd| 国产欧美日韩免费看aⅴ视频| 91久久精品国产91久久性色tv | 亚洲国产高清高潮精品美女| 国产日韩一级二级三级| 欧美一区午夜精品| 欧美不卡视频| 亚洲天堂网站在线观看视频| 国产精品国产a| 久久精彩免费视频| 亚洲电影自拍| 午夜精品在线观看| 亚洲日本免费电影| 国产日本欧美在线观看| 久久久噜噜噜久久中文字免| 亚洲国产精品www| 亚洲一区二区三区四区五区黄| 国产一区二区三区最好精华液| 噜噜爱69成人精品| 亚洲女女女同性video| 美女露胸一区二区三区| 亚洲综合视频网| 激情欧美亚洲| 欧美性片在线观看| 久久一区二区三区超碰国产精品| 亚洲精品网址在线观看| 久久精品久久综合| 亚洲一区二区三区免费观看 | 亚洲承认在线| 亚洲尤物精选| 国产视频丨精品|在线观看| 欧美国产日韩一区二区三区| 小嫩嫩精品导航| 亚洲影院高清在线| 91久久嫩草影院一区二区| 久久天天躁狠狠躁夜夜爽蜜月| 一本色道久久加勒比88综合| 亚洲韩国一区二区三区| 国产一二三精品| 女人香蕉久久**毛片精品| 99亚洲一区二区| 亚洲成人在线| 黄色av日韩| 国内揄拍国内精品少妇国语| 欧美网站在线| 欧美国产日韩在线观看| 久久亚洲捆绑美女| 久久精品av麻豆的观看方式| 亚洲一区二区三区精品动漫| 99精品欧美| 亚洲国产成人午夜在线一区| 欧美刺激午夜性久久久久久久| 久久精品毛片| 久久精品91| 久久激情综合| 久久全国免费视频| 久久精品一本久久99精品| 久久九九国产精品| 久久久久久久综合| 老司机一区二区| 看欧美日韩国产| 蜜臀va亚洲va欧美va天堂| 你懂的视频欧美| 欧美激情五月| 亚洲精品久久久久久下一站| 亚洲精选久久| 正在播放日韩| 午夜一区二区三区在线观看| 一本一本久久a久久精品综合麻豆 一本一本久久a久久精品牛牛影视 | 国内精品久久久久久| 国产精品美女久久久| 国产精品视频精品| 国产在线不卡视频| 亚洲人成在线观看| 亚洲丝袜av一区| 欧美一区成人| 鲁鲁狠狠狠7777一区二区| 亚洲高清不卡一区| 9l国产精品久久久久麻豆| 亚洲天堂免费在线观看视频| 日韩一级黄色av| 香蕉成人伊视频在线观看| 午夜在线视频观看日韩17c| 久久九九国产精品| 欧美大片18| 国产日产欧美精品| 最新国产拍偷乱拍精品| 欧美在线黄色| 你懂的亚洲视频| 亚洲一区不卡| 久久午夜羞羞影院免费观看| 亚洲第一精品夜夜躁人人躁| 日韩午夜激情| 老牛国产精品一区的观看方式| 欧美美女视频| 亚洲高清不卡一区| 亚洲伊人网站| 亚洲国产乱码最新视频| 中日韩视频在线观看| 久久综合九色综合欧美狠狠| 欧美性大战xxxxx久久久| 亚洲国产综合在线| 欧美中文字幕视频在线观看| 亚洲夫妻自拍| 欧美一区二区免费观在线| 免费在线看一区| 国产综合香蕉五月婷在线| 亚洲午夜久久久久久久久电影院 | 蜜桃av噜噜一区| 欧美精品一区二区精品网 | 榴莲视频成人在线观看| 中国av一区| 欧美日韩免费观看一区| 亚洲福利视频专区| 性色av香蕉一区二区| 亚洲黄色性网站| 久久精品夜色噜噜亚洲aⅴ| 国产欧美日韩在线观看| 亚洲国产综合在线| 亚洲国产精品成人va在线观看| 午夜精品久久久久久久99黑人| 欧美色中文字幕| 亚洲激情在线观看| 久久久青草婷婷精品综合日韩| 亚洲一区二区三区精品视频| 国产精品视频99| 亚洲视频福利| 日韩网站在线看片你懂的| 欧美成人激情视频| 亚洲欧洲精品一区二区三区波多野1战4 | 激情av一区二区| 久久福利毛片| 欧美一级淫片播放口| 国产视频精品xxxx| 久久久久亚洲综合| 亚洲国产精品一区| 欧美黄色日本| 欧美激情区在线播放| 亚洲精品在线视频观看| 亚洲精品一区二区三区蜜桃久| 嫩草影视亚洲| 欧美激情视频一区二区三区不卡| 亚洲经典自拍| 亚洲国产专区| 欧美日韩国产在线| 亚洲一区二区三区中文字幕在线 | 国产欧美欧美| 久久久精品免费视频| 久久国产福利国产秒拍| 亚洲国产精品悠悠久久琪琪| 久久综合久久美利坚合众国| 久久久水蜜桃| 日韩视频精品在线观看| 亚洲剧情一区二区| 国产精品自拍三区| 麻豆成人av| 欧美va亚洲va国产综合| 一区二区三区高清| 香蕉久久夜色| 亚洲免费观看高清在线观看| 在线亚洲一区观看| 在线观看欧美精品| 亚洲精品久久久久久久久久久| 国产精品无人区| 久久综合色一综合色88| 欧美日韩亚洲一区二区三区| 午夜精品成人在线视频| 久久久久99| 亚洲一区欧美激情| 免费成人网www| 亚洲在线第一页| 美日韩精品视频免费看| 亚洲香蕉成视频在线观看 | 欧美日韩影院| 蜜桃久久av一区| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ入口 | 欧美福利一区| 国产精品一区一区| 亚洲电影下载| 国外成人性视频| 一本一本大道香蕉久在线精品| 亚洲国产成人porn| 午夜精品福利电影| 中日韩男男gay无套| 久久精精品视频| 欧美一区午夜精品| 欧美日韩免费观看一区=区三区| 老司机免费视频久久| 国产精品黄色| 日韩亚洲欧美成人一区| 在线观看欧美成人| 久久久久这里只有精品| 性伦欧美刺激片在线观看| 欧美日韩卡一卡二| 亚洲欧洲日本一区二区三区| 亚洲福利国产精品| 久久久久久久高潮| 国产亚洲精品福利| 亚洲午夜在线观看| 亚洲免费中文|