• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            C++研究

            C++細節(jié)深度探索及軟件工程

              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              37 隨筆 :: 0 文章 :: 74 評論 :: 0 Trackbacks


            1.GRIDDLE METHOD (ALSO CALLED SIFT METHOD)

            When I was a student in Bachelor phrase , a teacher has tought me a method called griddle method , it's principle is:

            if a number can be devided by another number(except 1) , it isn't a prime , so , we set the non-prime at zero. after all number [In fact , half of the range checked is OK ]test finished , We simply output the NON-ZERO number , it 's the prime table in the RANGE.

            E.G
            Define the Range from 1-100;

            /********************************************************************
             created: 2007/04/19
             created: 19:4:2007   3:00
             filename:  C:\testvc6\TestStll\TestStll.cpp
             file path: C:\testvc6\TestStll
             file base: TestStll
             file ext: cpp
             author:  Chang xinglong(King.C)
             purpose: Print Prime Table in RANGE(1-100)
            *********************************************************************/

            The Code Here :

             


            #include 
            <iostream>
            #include 
            <algorithm>
            #include 
            <vector>
            using namespace std;

            void InitArray(int A[] ,int len)
            {
                
            for (int i=0;i<len;i++)
                
            {
                    A[i]
            =i+1;
                }

            }


            void OutputPrime(int A[] ,int len)
            {
              
            for (int i=2;i<len;i++)
              
            {
                  
            for (int j=2;i*j<=len;j++)
                  
            {
                      A[i
            *j-1]=0;
                      cout
            <<i<<","<<j<<","<<i*j<<endl;
                  }

                 
              }

              
            for (i=0;i<len;i++)
              
            {
                  
            if (A[i]!=0)
                  
            {
                      cout
            <<A[i]<<" ";
                  }

                  
              }

              cout
            <<endl;
            }

            // Main Method [4/19/2007 Changxinglong (King.C)]
            int main(int argc, char* argv[])
            {
                
            int A[100];
                InitArray(A,
            100);
                OutputPrime(A,
            100);
                
            return 1;
            }




             2.THE DIRECT METHOD

            E.G

            /********************************************************************
             created: 2007/04/19
             created: 19:4:2007   3:00
             filename:  C:\testvc6\TestStll\TestStll.cpp
             file path: C:\testvc6\TestStll
             file base: TestStll
             file ext: cpp
             author:  Chang xinglong(King.C)
             purpose: Prime ?
            *********************************************************************/

            Here is the Kernel Function(Quote : STL TURORIAL REFERRENCE):

             

             1//predicate, which returns whether an integer is a prime number
             2bool isPrime (int number)
             3{
             4//ignore negative sign
             5number = abs(number);
             6// 0 and 1 are prime numbers
             7if (number == 0 || number == 1{
             8return true;
             9}

            10//find divisor that divides without a remainder
            11int divisor;
            12for (divisor = number/2; number%divisor != 0--divisor) {
            13;
            14}

            15//if no divisor greater than 1 is found, it is a prime number
            16return divisor == 1;
            17}


            In Main Function , traverse the given range judge every number use the above function:

            int main(int argc , char * argv[])
            {
              
            int A[100];
              InitArray(A,
            100);
              
            for(int i=0;i<100;i++)
                
            if(isPrime(A[i]))
                   cout
            <<A[i]<<endl;
            }

            3. Extention
             Further , if  there is a given List or Vector and it's filled with data , how can you find the prime number in the data effiectly ?
            STL Algorithm can help you indeed. After the step two , we can write a few code to implement the function:
            int main()
            {
            list
            <int> coll;
            //insert elements from 1 to 100
            for (int i=1; i<=100++i) {
            coll.push_back(i);
            }

            //search for prime number
            list<int>::iterator pos;
            pos 
            = find_if (coll.begin(), coll.end(), //range
            isPrime); //predicate
            if (pos != coll.end()) {
            //found
            cout << *pos << " is first prime number found" << endl;
            }

            else {
            //not found
            cout << "no prime number found" << endl;
            }

            }


            posted on 2007-04-19 03:05 常興龍 閱讀(1333) 評論(8)  編輯 收藏 引用 所屬分類: Algorithm

            評論

            # re: Some algorithms about judging a prime . 2007-04-19 10:58 uglystone
            Write well!
            I think tha IsPrime funtion shoule be implemented as a functors!
            it may be more elegant!
            class IsPrime{
            public:
            IsPrime(){
            }
            bool isPrime (int number)
            {
            .....
            }
            };  回復  更多評論
              

            # re: Some algorithms about judging a prime . 2007-04-19 22:18 chenger
            這應(yīng)該是最原始的辦法  回復  更多評論
              

            # re: Some algorithms about judging a prime . 2007-04-26 19:00 oyjpart
            有一些很好的隨機算法  回復  更多評論
              

            # re: Some algorithms about judging a prime . 2007-05-12 23:26 不是很懂
            A primality test is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is known as prime factorization).

            Primality tests come in two varieties: deterministic and probabilistic. Deterministic tests determine with absolute certainty whether a number is prime. Examples of deterministic tests include the Lucas-Lehmer test and elliptic curve primality proving. Probabilistic tests can potentially (although with very small probability) falsely identify a composite number as prime (although not vice versa). However, they are in general much faster than deterministic tests. Numbers that have passed a probabilistic prime test are therefore properly referred to as probable primes until their primality can be demonstrated deterministically.

            A number that passes a probabilistic test but is in fact composite is known as a pseudoprime. There are many specific types of pseudoprimes, the most common being the Fermat pseudoprimes, which are composites that nonetheless satisfy Fermat's little theorem.

            The Rabin-Miller strong pseudoprime test is a particularly efficient test. Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test used by the function PrimeQ[n]. Like many such algorithms, it is a probabilistic test using pseudoprimes. In order to guarantee primality, a much slower deterministic algorithm must be used. However, no numbers are actually known that pass advanced probabilistic tests (such as Rabin-Miller) yet are actually composite.

            The state of the art in deterministic primality testing for arbitrary numbers is elliptic curve primality proving. As of 2004, the program PRIMO can certify a 4769-digit prime in approximately 2000 hours of computation (or nearly three months of uninterrupted computation) on a 1 GHz processor using this technique.

            Unlike prime factorization, primality testing was long believed to be a P-problem (Wagon 1991). This had not been demonstrated, however, until Agrawal et al. (2002) unexpectedly discovered a polynomial time algorithm for primality testing that has asymptotic complexity of (Bernstein 2002, Clark 2002, Indian Institute of Technology 2002, Pomerance 2002ab, Robinson 2002). Their algorithm has come to be called the AKS primality test.

            http://mathworld.wolfram.com/PrimalityTest.html  回復  更多評論
              

            # re: Some algorithms about judging a prime . 2007-05-17 00:12 天津大學計算機學院 常興龍
            Very appreciated for your comment , I have benefited a lot from it. thanks again!  回復  更多評論
              

            # re: Some algorithms about judging a prime . 2008-04-24 02:01 Rex.Kingsir
            Thanks a lot for talk so much!  回復  更多評論
              

            # re: Some algorithms about judging a prime . 2008-07-05 16:45 我們一起來提高
            數(shù)論學家利用費馬小定理研究出了多種素數(shù)測試方法,目前最快的算法是拉賓米
            勒測試算法,其過程如下:
            (1)計算奇數(shù)M,使得N=(2**r)*M+1
            (2)選擇隨機數(shù)A<N
            (3)對于任意i<r,若A**((2**i)*M) MOD N = N-1,則N通過隨機數(shù)A的測試
            (4)或者,若A**M MOD N = 1,則N通過隨機數(shù)A的測試
            (5)讓A取不同的值對N進行5次測試,若全部通過則判定N為素數(shù)
            若N 通過一次測試,則N 不是素數(shù)的概率為 25%,若N 通過t 次測試,則N 不是
            素數(shù)的概率為1/4**t。事實上取t 為5 時,N 不是素數(shù)的概率為 1/128,N 為素數(shù)的
            概率已經(jīng)大于99.99%。
            在實際應(yīng)用中,可首先用300—500個小素數(shù)對N 進行測試,以提高拉賓米勒測試
            通過的概率,從而提高測試速度。而在生成隨機素數(shù)時,選取的隨機數(shù)最好讓 r=0,
            則可省去步驟(3) 的測試,進一步提高測試速度
              回復  更多評論
              

            # re: Some algorithms about judging a prime . 2009-05-16 19:29 u2u
            @我們一起來提高
            現(xiàn)在最快的是AKS...  回復  更多評論
              

            > hi的博客
            亚洲国产精品一区二区久久hs | 国产精品禁18久久久夂久| 亚洲国产成人久久综合一区77| 香港aa三级久久三级| 狠狠精品久久久无码中文字幕| 久久99精品国产99久久6| 久久精品这里只有精99品| 久久影视综合亚洲| 综合网日日天干夜夜久久| 久久精品蜜芽亚洲国产AV| 亚洲国产精品久久久久久| 久久夜色精品国产www| 伊人久久大香线蕉AV一区二区| 亚洲国产天堂久久久久久| 少妇高潮惨叫久久久久久| 久久亚洲欧美日本精品| 亚洲国产精品无码久久久久久曰| 中文字幕精品无码久久久久久3D日动漫 | 亚洲国产美女精品久久久久∴| 久久精品免费网站网| 国产69精品久久久久9999APGF | 久久久久亚洲精品无码网址| 久久综合亚洲色一区二区三区| 久久精品九九亚洲精品天堂| 偷偷做久久久久网站| 国产精品久久久久久吹潮| 久久婷婷人人澡人人爽人人爱| 久久久精品午夜免费不卡| 日产精品久久久久久久| 91精品无码久久久久久五月天| 国产激情久久久久久熟女老人 | 精品水蜜桃久久久久久久| 久久男人Av资源网站无码软件| 久久久久免费视频| 精品一区二区久久| 香蕉久久夜色精品升级完成| 久久久久一本毛久久久| 久久综合综合久久狠狠狠97色88 | 综合网日日天干夜夜久久 | 亚洲αv久久久噜噜噜噜噜| 人妻精品久久久久中文字幕 |