青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

C++研究

C++細節深度探索及軟件工程

  C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
  37 隨筆 :: 0 文章 :: 74 評論 :: 0 Trackbacks


1.GRIDDLE METHOD (ALSO CALLED SIFT METHOD)

When I was a student in Bachelor phrase , a teacher has tought me a method called griddle method , it's principle is:

if a number can be devided by another number(except 1) , it isn't a prime , so , we set the non-prime at zero. after all number [In fact , half of the range checked is OK ]test finished , We simply output the NON-ZERO number , it 's the prime table in the RANGE.

E.G
Define the Range from 1-100;

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Print Prime Table in RANGE(1-100)
*********************************************************************/

The Code Here :

 


#include 
<iostream>
#include 
<algorithm>
#include 
<vector>
using namespace std;

void InitArray(int A[] ,int len)
{
    
for (int i=0;i<len;i++)
    
{
        A[i]
=i+1;
    }

}


void OutputPrime(int A[] ,int len)
{
  
for (int i=2;i<len;i++)
  
{
      
for (int j=2;i*j<=len;j++)
      
{
          A[i
*j-1]=0;
          cout
<<i<<","<<j<<","<<i*j<<endl;
      }

     
  }

  
for (i=0;i<len;i++)
  
{
      
if (A[i]!=0)
      
{
          cout
<<A[i]<<" ";
      }

      
  }

  cout
<<endl;
}

// Main Method [4/19/2007 Changxinglong (King.C)]
int main(int argc, char* argv[])
{
    
int A[100];
    InitArray(A,
100);
    OutputPrime(A,
100);
    
return 1;
}




 2.THE DIRECT METHOD

E.G

/********************************************************************
 created: 2007/04/19
 created: 19:4:2007   3:00
 filename:  C:\testvc6\TestStll\TestStll.cpp
 file path: C:\testvc6\TestStll
 file base: TestStll
 file ext: cpp
 author:  Chang xinglong(King.C)
 purpose: Prime ?
*********************************************************************/

Here is the Kernel Function(Quote : STL TURORIAL REFERRENCE):

 

 1//predicate, which returns whether an integer is a prime number
 2bool isPrime (int number)
 3{
 4//ignore negative sign
 5number = abs(number);
 6// 0 and 1 are prime numbers
 7if (number == 0 || number == 1{
 8return true;
 9}

10//find divisor that divides without a remainder
11int divisor;
12for (divisor = number/2; number%divisor != 0--divisor) {
13;
14}

15//if no divisor greater than 1 is found, it is a prime number
16return divisor == 1;
17}


In Main Function , traverse the given range judge every number use the above function:

int main(int argc , char * argv[])
{
  
int A[100];
  InitArray(A,
100);
  
for(int i=0;i<100;i++)
    
if(isPrime(A[i]))
       cout
<<A[i]<<endl;
}

3. Extention
 Further , if  there is a given List or Vector and it's filled with data , how can you find the prime number in the data effiectly ?
STL Algorithm can help you indeed. After the step two , we can write a few code to implement the function:
int main()
{
list
<int> coll;
//insert elements from 1 to 100
for (int i=1; i<=100++i) {
coll.push_back(i);
}

//search for prime number
list<int>::iterator pos;
pos 
= find_if (coll.begin(), coll.end(), //range
isPrime); //predicate
if (pos != coll.end()) {
//found
cout << *pos << " is first prime number found" << endl;
}

else {
//not found
cout << "no prime number found" << endl;
}

}


posted on 2007-04-19 03:05 常興龍 閱讀(1370) 評論(8)  編輯 收藏 引用 所屬分類: Algorithm

評論

# re: Some algorithms about judging a prime . 2007-04-19 10:58 uglystone
Write well!
I think tha IsPrime funtion shoule be implemented as a functors!
it may be more elegant!
class IsPrime{
public:
IsPrime(){
}
bool isPrime (int number)
{
.....
}
};  回復  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-19 22:18 chenger
這應該是最原始的辦法  回復  更多評論
  

# re: Some algorithms about judging a prime . 2007-04-26 19:00 oyjpart
有一些很好的隨機算法  回復  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-12 23:26 不是很懂
A primality test is a test to determine whether or not a given number is prime, as opposed to actually decomposing the number into its constituent prime factors (which is known as prime factorization).

Primality tests come in two varieties: deterministic and probabilistic. Deterministic tests determine with absolute certainty whether a number is prime. Examples of deterministic tests include the Lucas-Lehmer test and elliptic curve primality proving. Probabilistic tests can potentially (although with very small probability) falsely identify a composite number as prime (although not vice versa). However, they are in general much faster than deterministic tests. Numbers that have passed a probabilistic prime test are therefore properly referred to as probable primes until their primality can be demonstrated deterministically.

A number that passes a probabilistic test but is in fact composite is known as a pseudoprime. There are many specific types of pseudoprimes, the most common being the Fermat pseudoprimes, which are composites that nonetheless satisfy Fermat's little theorem.

The Rabin-Miller strong pseudoprime test is a particularly efficient test. Mathematica versions 2.2 and later have implemented the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test used by the function PrimeQ[n]. Like many such algorithms, it is a probabilistic test using pseudoprimes. In order to guarantee primality, a much slower deterministic algorithm must be used. However, no numbers are actually known that pass advanced probabilistic tests (such as Rabin-Miller) yet are actually composite.

The state of the art in deterministic primality testing for arbitrary numbers is elliptic curve primality proving. As of 2004, the program PRIMO can certify a 4769-digit prime in approximately 2000 hours of computation (or nearly three months of uninterrupted computation) on a 1 GHz processor using this technique.

Unlike prime factorization, primality testing was long believed to be a P-problem (Wagon 1991). This had not been demonstrated, however, until Agrawal et al. (2002) unexpectedly discovered a polynomial time algorithm for primality testing that has asymptotic complexity of (Bernstein 2002, Clark 2002, Indian Institute of Technology 2002, Pomerance 2002ab, Robinson 2002). Their algorithm has come to be called the AKS primality test.

http://mathworld.wolfram.com/PrimalityTest.html  回復  更多評論
  

# re: Some algorithms about judging a prime . 2007-05-17 00:12 天津大學計算機學院 常興龍
Very appreciated for your comment , I have benefited a lot from it. thanks again!  回復  更多評論
  

# re: Some algorithms about judging a prime . 2008-04-24 02:01 Rex.Kingsir
Thanks a lot for talk so much!  回復  更多評論
  

# re: Some algorithms about judging a prime . 2008-07-05 16:45 我們一起來提高
數論學家利用費馬小定理研究出了多種素數測試方法,目前最快的算法是拉賓米
勒測試算法,其過程如下:
(1)計算奇數M,使得N=(2**r)*M+1
(2)選擇隨機數A<N
(3)對于任意i<r,若A**((2**i)*M) MOD N = N-1,則N通過隨機數A的測試
(4)或者,若A**M MOD N = 1,則N通過隨機數A的測試
(5)讓A取不同的值對N進行5次測試,若全部通過則判定N為素數
若N 通過一次測試,則N 不是素數的概率為 25%,若N 通過t 次測試,則N 不是
素數的概率為1/4**t。事實上取t 為5 時,N 不是素數的概率為 1/128,N 為素數的
概率已經大于99.99%。
在實際應用中,可首先用300—500個小素數對N 進行測試,以提高拉賓米勒測試
通過的概率,從而提高測試速度。而在生成隨機素數時,選取的隨機數最好讓 r=0,
則可省去步驟(3) 的測試,進一步提高測試速度
  回復  更多評論
  

# re: Some algorithms about judging a prime . 2009-05-16 19:29 u2u
@我們一起來提高
現在最快的是AKS...  回復  更多評論
  

> hi的博客
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            麻豆亚洲精品| 亚洲精品国精品久久99热一| 一区二区三区不卡视频在线观看| 午夜一区在线| 一区二区三区久久| 日韩一区二区精品视频| 亚洲精品视频免费在线观看| 亚洲激情黄色| 亚洲一区二区av电影| 亚洲网站在线观看| 欧美在线地址| 久久亚洲不卡| 国产精品美女xx| 国产精品一级久久久| 狠色狠色综合久久| 99在线视频精品| 久久国产精品一区二区三区四区| 久久精品欧美日韩精品| 免费欧美日韩| 亚洲视频精选在线| 麻豆91精品| 国产精品久久久一区二区三区| 一区二区欧美视频| 欧美福利视频在线| 国产精品a久久久久久| 精品福利电影| 午夜在线视频观看日韩17c| 欧美本精品男人aⅴ天堂| 亚洲作爱视频| 欧美精品免费看| 亚洲成色777777在线观看影院| 亚洲图中文字幕| 亚洲黄色成人久久久| 中文精品一区二区三区| 欧美激情一区| 亚洲国产精品福利| 欧美成人免费全部观看天天性色| 亚洲一区www| 国产精品嫩草影院一区二区| 一本久久精品一区二区| 亚洲人体影院| 欧美日韩三级电影在线| 亚洲一区不卡| 欧美与黑人午夜性猛交久久久| 国产精品区一区二区三区| 亚洲一区二区日本| 中文av一区二区| 久久精品亚洲国产奇米99| 亚洲男同1069视频| 国语自产精品视频在线看| 久热精品在线视频| 欧美电影打屁股sp| 亚洲图片你懂的| 午夜日韩福利| 日韩亚洲视频| 欧美在线关看| 中文无字幕一区二区三区| 午夜免费久久久久| 在线观看亚洲视频| 日韩午夜av| 永久免费视频成人| 亚洲视频一区二区| 亚洲精品免费观看| 小处雏高清一区二区三区| 亚洲精品中文字幕女同| 欧美一区二区三区视频| 亚洲欧美久久久久一区二区三区| 久久久视频精品| 久久超碰97人人做人人爱| 欧美激情一区二区三区在线| 欧美一区91| 国产精品一区二区久久国产| 亚洲激情综合| 99视频有精品| 欧美日韩国产a| 亚洲欧洲一级| 一区二区三区黄色| 欧美午夜久久久| 中国日韩欧美久久久久久久久| 亚洲精品一区二区三区在线观看 | 麻豆国产va免费精品高清在线| 这里只有精品视频| 欧美国产精品va在线观看| 国产精品理论片| 亚洲综合精品四区| 欧美在线观看一二区| 国内精品视频666| 欧美+日本+国产+在线a∨观看| 老司机免费视频一区二区三区| 一区三区视频| 欧美成人午夜77777| 亚洲国产一区二区在线| 一区二区高清在线观看| 国产手机视频一区二区| 久久久久久久久久久久久久一区| 欧美成人自拍| 香蕉亚洲视频| 亚洲三级免费| 国产伦理一区| 麻豆精品91| 亚洲一区999| 一本久久青青| 欧美韩日一区| 久久精品国产免费| 亚洲天堂成人在线观看| 亚洲黄色一区二区三区| 欧美日韩裸体免费视频| 久久久久久网址| 亚洲一区视频在线| 男人插女人欧美| 欧美一区三区二区在线观看| 亚洲婷婷在线| 亚洲激情一区二区| 一色屋精品亚洲香蕉网站| 国产精品久久久久9999吃药| 麻豆精品国产91久久久久久| 欧美一区二区三区免费视频| 在线视频欧美日韩| 亚洲午夜小视频| 这里只有精品丝袜| 亚洲欧美日韩综合一区| 欧美jizz19hd性欧美| 久久国产精品99国产| 久久成人免费电影| 亚洲综合电影一区二区三区| 亚洲一区二区在线| 一区二区三区导航| 一区二区三区鲁丝不卡| 亚洲一级黄色片| 性欧美办公室18xxxxhd| 久久精品人人做人人综合 | 久久久久久夜| 国产一区二区三区四区| 在线观看国产日韩| 在线观看国产一区二区| 亚洲精品色婷婷福利天堂| 亚洲精品久久久久久久久久久久久 | 国产精品久久久久9999高清| 国产精品人人做人人爽| 国产精品v日韩精品v欧美精品网站| 欧美日韩高清一区| 在线成人黄色| 亚洲一区日韩| 久久综合九色综合欧美就去吻| 亚洲国产清纯| 久久精品电影| 欧美日韩日韩| 亚洲精品一区二区三区福利| 亚洲一级黄色av| 欧美大片在线观看一区| 亚洲一区二区三区精品视频| 欧美黄色网络| **网站欧美大片在线观看| 久久久福利视频| 午夜精品免费在线| 国产精品热久久久久夜色精品三区| 99re6热在线精品视频播放速度| 久久一二三国产| 久久久久久久高潮| 尤物yw午夜国产精品视频| 国产精品久久久久一区二区三区 | 欧美专区中文字幕| 国产日韩欧美在线| 久久亚洲春色中文字幕| 久久视频一区二区| 亚洲精品国久久99热| 一本不卡影院| 国内精品久久久久影院薰衣草| 欧美一区=区| 老妇喷水一区二区三区| 一本久久综合亚洲鲁鲁| 亚洲精品国产品国语在线app| 欧美日韩亚洲不卡| 亚洲专区一二三| 久久精品天堂| 亚洲精品视频在线| 亚洲综合成人在线| 亚洲精品在线观看视频| 性色av一区二区三区| 最新亚洲激情| 久久av在线| 亚洲在线一区| 欧美日韩高清在线观看| 欧美大胆成人| 伊人精品视频| 久久精品国产精品亚洲| 亚洲欧美久久久久一区二区三区| 欧美成ee人免费视频| 久久综合伊人77777蜜臀| 国产精品美女久久久久av超清| 亚洲国产精品va| 亚洲国产另类精品专区 | 亚洲综合丁香| 亚洲欧美日韩在线| 国产精品分类| 一本色道久久综合一区| 一区二区三区国产在线| 欧美性大战久久久久久久蜜臀| 亚洲美女诱惑| 欧美激情一区二区三区四区|