• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            from http://docs.continuum.io/anaconda-cluster/examples/spark-caffe

            Deep Learning (Spark, Caffe, GPU)

            Description

            To demonstrate the capability of running a distributed job in PySpark using a GPU, this example uses a neural network library, Caffe. Below is a trivial example of using Caffe on a Spark cluster; although this is redundant, it demonstrates the capability of training neural networks with GPUs.

            For this example, we recommend the use of the AMI ami-2cbf3e44 and the instance type g2.2xlarge. An example profile (to be placed in ~/.acluster/profiles.d/gpu_profile.yaml) is shown below:

            name: gpu_profile
            node_id: ami-2cbf3e44 # Ubuntu 14.04 - IS HVM - Cuda 6.5
            user: ubuntu
            node_type: g2.2xlarge
            num_nodes: 3
            provider: aws
            plugins:
              - spark-yarn
              - notebook
            

            Download

            To execute this example, download the: spark-caffe.py example script or spark-caffe.ipynbexample notebook.

            Installation

            The Spark + YARN plugin can be installed on the cluster using the following command:

            $ acluster install spark-yarn
            

            Once the Spark + YARN plugin is installed, you can view the YARN UI in your browser using the following command:

            $ acluster open yarn
            

            Dependencies

            First, we need to bootstrap Caffe and its dependencies on all of the nodes. We provide a bash script that will install Caffe from source: bootstrap-caffe.sh. The following command can be used to upload the bootstrap-caffe.sh script to all of the nodes and execute it in parallel:

            $ acluster submit bootstrap-caffe.sh --all
            

            After a few minues, Caffe and its dependencies will be installed on the cluster nodes and the job can be started.

            Running the Job

            Here is the complete script to run the Spark + GPU with Caffe example in PySpark:

            # spark-caffe.py from pyspark import SparkConf from pyspark import SparkContext  conf = SparkConf() conf.setMaster('yarn-client') conf.setAppName('spark-caffe') sc = SparkContext(conf=conf)   def noop(x):     import socket     return socket.gethostname()  rdd = sc.parallelize(range(2), 2) hosts = rdd.map(noop).distinct().collect() print hosts   def caffe_process(x):     import os     os.environ['PATH'] = '/usr/local/cuda/bin' + ':' + os.environ['PATH']     os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:/home/ubuntu/pombredanne-https-gitorious.org-mdb-mdb.git-9cc04f604f80/libraries/liblmdb'     import subprocess     proc = subprocess.Popen('cd /home/ubuntu/caffe && bash ./examples/mnist/train_lenet.sh', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)     out, err = proc.communicate()     return proc.returncode, out, err  rdd = sc.parallelize(range(2), 2) ret = rdd.map(caffe_process).distinct().collect() print ret 

            You can submit the script to the Spark cluster using the submit command.

            $ acluster submit spark-caffe.py 

            After the script completes, the trained Caffe model can be found at/home/ubuntu/caffe/examples/mnist/lenet_iter_10000.caffemodel on all of the compute nodes.

            posted on 2015-10-14 17:25 閱讀(3584) 評論(1)  編輯 收藏 引用 所屬分類: life關于人工智能的yy

            評論:
            # re: Deep Learning (Spark, Caffe, GPU) 2015-10-21 18:19 | 春秋十二月
            這是啥  回復  更多評論
              
            久久久久久国产精品无码超碰| 久久精品成人| 中文精品久久久久人妻不卡| 久久国产热精品波多野结衣AV| 日本久久久久亚洲中字幕| 99热都是精品久久久久久| 性欧美大战久久久久久久久| 国产精品美女久久久久av爽 | 亚洲熟妇无码另类久久久| 婷婷久久久亚洲欧洲日产国码AV| 99re这里只有精品热久久| 日产精品久久久久久久| 亚洲精品tv久久久久久久久久| 亚洲国产精久久久久久久| 久久久久久午夜成人影院| 国产精品激情综合久久| 精品熟女少妇av免费久久| 久久久久无码精品国产| 久久av高潮av无码av喷吹| 久久久久这里只有精品 | 久久精品成人免费网站| 久久精品毛片免费观看| 久久午夜综合久久| 99久久精品国产一区二区| 久久久久无码精品国产| 亚洲午夜久久久久久久久电影网 | 欧洲人妻丰满av无码久久不卡| 久久精品免费大片国产大片| 97热久久免费频精品99| 伊人色综合久久天天人守人婷| 国产综合精品久久亚洲| 国产免费久久久久久无码| 国产精品久久网| 日韩一区二区久久久久久| 国产69精品久久久久99| 国产一级持黄大片99久久| 99久久婷婷国产综合亚洲| 久久久久免费看成人影片| 久久久精品国产sm调教网站 | 精品综合久久久久久98| 久久精品www人人爽人人|