• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            from http://docs.continuum.io/anaconda-cluster/examples/spark-caffe

            Deep Learning (Spark, Caffe, GPU)

            Description

            To demonstrate the capability of running a distributed job in PySpark using a GPU, this example uses a neural network library, Caffe. Below is a trivial example of using Caffe on a Spark cluster; although this is redundant, it demonstrates the capability of training neural networks with GPUs.

            For this example, we recommend the use of the AMI ami-2cbf3e44 and the instance type g2.2xlarge. An example profile (to be placed in ~/.acluster/profiles.d/gpu_profile.yaml) is shown below:

            name: gpu_profile
            node_id: ami-2cbf3e44 # Ubuntu 14.04 - IS HVM - Cuda 6.5
            user: ubuntu
            node_type: g2.2xlarge
            num_nodes: 3
            provider: aws
            plugins:
              - spark-yarn
              - notebook
            

            Download

            To execute this example, download the: spark-caffe.py example script or spark-caffe.ipynbexample notebook.

            Installation

            The Spark + YARN plugin can be installed on the cluster using the following command:

            $ acluster install spark-yarn
            

            Once the Spark + YARN plugin is installed, you can view the YARN UI in your browser using the following command:

            $ acluster open yarn
            

            Dependencies

            First, we need to bootstrap Caffe and its dependencies on all of the nodes. We provide a bash script that will install Caffe from source: bootstrap-caffe.sh. The following command can be used to upload the bootstrap-caffe.sh script to all of the nodes and execute it in parallel:

            $ acluster submit bootstrap-caffe.sh --all
            

            After a few minues, Caffe and its dependencies will be installed on the cluster nodes and the job can be started.

            Running the Job

            Here is the complete script to run the Spark + GPU with Caffe example in PySpark:

            # spark-caffe.py from pyspark import SparkConf from pyspark import SparkContext  conf = SparkConf() conf.setMaster('yarn-client') conf.setAppName('spark-caffe') sc = SparkContext(conf=conf)   def noop(x):     import socket     return socket.gethostname()  rdd = sc.parallelize(range(2), 2) hosts = rdd.map(noop).distinct().collect() print hosts   def caffe_process(x):     import os     os.environ['PATH'] = '/usr/local/cuda/bin' + ':' + os.environ['PATH']     os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:/home/ubuntu/pombredanne-https-gitorious.org-mdb-mdb.git-9cc04f604f80/libraries/liblmdb'     import subprocess     proc = subprocess.Popen('cd /home/ubuntu/caffe && bash ./examples/mnist/train_lenet.sh', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)     out, err = proc.communicate()     return proc.returncode, out, err  rdd = sc.parallelize(range(2), 2) ret = rdd.map(caffe_process).distinct().collect() print ret 

            You can submit the script to the Spark cluster using the submit command.

            $ acluster submit spark-caffe.py 

            After the script completes, the trained Caffe model can be found at/home/ubuntu/caffe/examples/mnist/lenet_iter_10000.caffemodel on all of the compute nodes.

            posted on 2015-10-14 17:25 閱讀(3584) 評論(1)  編輯 收藏 引用 所屬分類: life關于人工智能的yy

            評論:
            # re: Deep Learning (Spark, Caffe, GPU) 2015-10-21 18:19 | 春秋十二月
            這是啥  回復  更多評論
              
            亚洲精品无码久久一线| 国内精品久久久久国产盗摄| 国产成人久久激情91 | 亚洲国产另类久久久精品| 2021国内久久精品| 久久综合给合久久狠狠狠97色 | 97视频久久久| 久久婷婷五月综合色高清| 久久久国产精品| 国产精品九九九久久九九| 国产精品久久久久久久午夜片| 国产亚洲欧美精品久久久| 久久受www免费人成_看片中文| 秋霞久久国产精品电影院| 亚洲国产另类久久久精品| 91超碰碰碰碰久久久久久综合| 久久精品国产亚洲av麻豆小说| 久久免费看黄a级毛片| 久久涩综合| 久久久WWW成人免费精品| 国产亚洲综合久久系列| 久久香综合精品久久伊人| 国产综合免费精品久久久| 久久久久久久久无码精品亚洲日韩 | 久久99精品国产| 国产精品九九久久免费视频 | 国产精品va久久久久久久| 久久久无码精品亚洲日韩按摩| 精品伊人久久大线蕉色首页| 久久久久18| 人妻中文久久久久| 99久久精品免费看国产一区二区三区| 成人午夜精品无码区久久| 久久婷婷五月综合色奶水99啪| 久久亚洲AV成人无码软件| 开心久久婷婷综合中文字幕| 久久精品无码一区二区三区日韩| 国产成人综合久久久久久| 久久久久久A亚洲欧洲AV冫| Xx性欧美肥妇精品久久久久久| 久久r热这里有精品视频|