• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            from http://docs.continuum.io/anaconda-cluster/examples/spark-caffe

            Deep Learning (Spark, Caffe, GPU)

            Description

            To demonstrate the capability of running a distributed job in PySpark using a GPU, this example uses a neural network library, Caffe. Below is a trivial example of using Caffe on a Spark cluster; although this is redundant, it demonstrates the capability of training neural networks with GPUs.

            For this example, we recommend the use of the AMI ami-2cbf3e44 and the instance type g2.2xlarge. An example profile (to be placed in ~/.acluster/profiles.d/gpu_profile.yaml) is shown below:

            name: gpu_profile
            node_id: ami-2cbf3e44 # Ubuntu 14.04 - IS HVM - Cuda 6.5
            user: ubuntu
            node_type: g2.2xlarge
            num_nodes: 3
            provider: aws
            plugins:
              - spark-yarn
              - notebook
            

            Download

            To execute this example, download the: spark-caffe.py example script or spark-caffe.ipynbexample notebook.

            Installation

            The Spark + YARN plugin can be installed on the cluster using the following command:

            $ acluster install spark-yarn
            

            Once the Spark + YARN plugin is installed, you can view the YARN UI in your browser using the following command:

            $ acluster open yarn
            

            Dependencies

            First, we need to bootstrap Caffe and its dependencies on all of the nodes. We provide a bash script that will install Caffe from source: bootstrap-caffe.sh. The following command can be used to upload the bootstrap-caffe.sh script to all of the nodes and execute it in parallel:

            $ acluster submit bootstrap-caffe.sh --all
            

            After a few minues, Caffe and its dependencies will be installed on the cluster nodes and the job can be started.

            Running the Job

            Here is the complete script to run the Spark + GPU with Caffe example in PySpark:

            # spark-caffe.py from pyspark import SparkConf from pyspark import SparkContext  conf = SparkConf() conf.setMaster('yarn-client') conf.setAppName('spark-caffe') sc = SparkContext(conf=conf)   def noop(x):     import socket     return socket.gethostname()  rdd = sc.parallelize(range(2), 2) hosts = rdd.map(noop).distinct().collect() print hosts   def caffe_process(x):     import os     os.environ['PATH'] = '/usr/local/cuda/bin' + ':' + os.environ['PATH']     os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:/home/ubuntu/pombredanne-https-gitorious.org-mdb-mdb.git-9cc04f604f80/libraries/liblmdb'     import subprocess     proc = subprocess.Popen('cd /home/ubuntu/caffe && bash ./examples/mnist/train_lenet.sh', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)     out, err = proc.communicate()     return proc.returncode, out, err  rdd = sc.parallelize(range(2), 2) ret = rdd.map(caffe_process).distinct().collect() print ret 

            You can submit the script to the Spark cluster using the submit command.

            $ acluster submit spark-caffe.py 

            After the script completes, the trained Caffe model can be found at/home/ubuntu/caffe/examples/mnist/lenet_iter_10000.caffemodel on all of the compute nodes.

            posted on 2015-10-14 17:25 閱讀(3584) 評論(1)  編輯 收藏 引用 所屬分類: life關于人工智能的yy

            評論:
            # re: Deep Learning (Spark, Caffe, GPU) 2015-10-21 18:19 | 春秋十二月
            這是啥  回復  更多評論
              
            色老头网站久久网| 97精品国产91久久久久久| 99久久这里只有精品| 久久久亚洲欧洲日产国码是AV| 国产精品久久久久乳精品爆| 久久精品国产99国产精品澳门| 麻豆AV一区二区三区久久| 亚洲va久久久噜噜噜久久狠狠| 亚洲欧洲日产国码无码久久99| 久久久无码精品亚洲日韩京东传媒| 亚洲乱码日产精品a级毛片久久| 久久久久黑人强伦姧人妻| 久久久久97国产精华液好用吗| 欧美麻豆久久久久久中文| 久久久久国产精品麻豆AR影院| 国内精品久久久久久中文字幕| 一级做a爱片久久毛片| 国产A级毛片久久久精品毛片| 久久91这里精品国产2020| 无码任你躁久久久久久老妇| 精品国产乱码久久久久软件| 久久亚洲精品人成综合网| 99精品久久精品一区二区| 日本精品久久久中文字幕| 久久久久国产一级毛片高清板| 久久中文字幕人妻丝袜| 久久99精品久久久久久hb无码| 91精品日韩人妻无码久久不卡 | 国产精品久久久久久久久| 91精品国产高清久久久久久国产嫩草 | 久久国产精品一区| 中文成人久久久久影院免费观看| 久久人爽人人爽人人片AV| 中文字幕亚洲综合久久2| 精产国品久久一二三产区区别 | 99久久国产精品免费一区二区| 久久综合久久自在自线精品自| 国产成人精品久久一区二区三区av| 亚洲国产成人乱码精品女人久久久不卡| 亚洲中文字幕无码久久2020| 国产AⅤ精品一区二区三区久久|