• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            我要啦免费统计

            1. Compression algorithm (deflate)

            The deflation algorithm used by gzip (also zip and zlib) is a variation of
            LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
            the input data.  The second occurrence of a string is replaced by a
            pointer to the previous string, in the form of a pair (distance,
            length).  Distances are limited to 32K bytes, and lengths are limited
            to 258 bytes. When a string does not occur anywhere in the previous
            32K bytes, it is emitted as a sequence of literal bytes.  (In this
            description, `string' must be taken as an arbitrary sequence of bytes,
            and is not restricted to printable characters.)

            Literals or match lengths are compressed with one Huffman tree, and
            match distances are compressed with another tree. The trees are stored
            in a compact form at the start of each block. The blocks can have any
            size (except that the compressed data for one block must fit in
            available memory). A block is terminated when deflate() determines that
            it would be useful to start another block with fresh trees. (This is
            somewhat similar to the behavior of LZW-based _compress_.)

            Duplicated strings are found using a hash table. All input strings of
            length 3 are inserted in the hash table. A hash index is computed for
            the next 3 bytes. If the hash chain for this index is not empty, all
            strings in the chain are compared with the current input string, and
            the longest match is selected.

            The hash chains are searched starting with the most recent strings, to
            favor small distances and thus take advantage of the Huffman encoding.
            The hash chains are singly linked. There are no deletions from the
            hash chains, the algorithm simply discards matches that are too old.

            To avoid a worst-case situation, very long hash chains are arbitrarily
            truncated at a certain length, determined by a runtime option (level
            parameter of deflateInit). So deflate() does not always find the longest
            possible match but generally finds a match which is long enough.

            deflate() also defers the selection of matches with a lazy evaluation
            mechanism. After a match of length N has been found, deflate() searches for
            a longer match at the next input byte. If a longer match is found, the
            previous match is truncated to a length of one (thus producing a single
            literal byte) and the process of lazy evaluation begins again. Otherwise,
            the original match is kept, and the next match search is attempted only N
            steps later.

            The lazy match evaluation is also subject to a runtime parameter. If
            the current match is long enough, deflate() reduces the search for a longer
            match, thus speeding up the whole process. If compression ratio is more
            important than speed, deflate() attempts a complete second search even if
            the first match is already long enough.

            The lazy match evaluation is not performed for the fastest compression
            modes (level parameter 1 to 3). For these fast modes, new strings
            are inserted in the hash table only when no match was found, or
            when the match is not too long. This degrades the compression ratio
            but saves time since there are both fewer insertions and fewer searches.


            2. Decompression algorithm (inflate)

            2.1 Introduction

            The key question is how to represent a Huffman code (or any prefix code) so
            that you can decode fast.  The most important characteristic is that shorter
            codes are much more common than longer codes, so pay attention to decoding the
            short codes fast, and let the long codes take longer to decode.

            inflate() sets up a first level table that covers some number of bits of
            input less than the length of longest code.  It gets that many bits from the
            stream, and looks it up in the table.  The table will tell if the next
            code is that many bits or less and how many, and if it is, it will tell
            the value, else it will point to the next level table for which inflate()
            grabs more bits and tries to decode a longer code.

            How many bits to make the first lookup is a tradeoff between the time it
            takes to decode and the time it takes to build the table.  If building the
            table took no time (and if you had infinite memory), then there would only
            be a first level table to cover all the way to the longest code.  However,
            building the table ends up taking a lot longer for more bits since short
            codes are replicated many times in such a table.  What inflate() does is
            simply to make the number of bits in the first table a variable, and  then
            to set that variable for the maximum speed.

            For inflate, which has 286 possible codes for the literal/length tree, the size
            of the first table is nine bits.  Also the distance trees have 30 possible
            values, and the size of the first table is six bits.  Note that for each of
            those cases, the table ended up one bit longer than the ``average'' code
            length, i.e. the code length of an approximately flat code which would be a
            little more than eight bits for 286 symbols and a little less than five bits
            for 30 symbols.


            2.2 More details on the inflate table lookup

            Ok, you want to know what this cleverly obfuscated inflate tree actually
            looks like.  You are correct that it's not a Huffman tree.  It is simply a
            lookup table for the first, let's say, nine bits of a Huffman symbol.  The
            symbol could be as short as one bit or as long as 15 bits.  If a particular
            symbol is shorter than nine bits, then that symbol's translation is duplicated
            in all those entries that start with that symbol's bits.  For example, if the
            symbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a
            symbol is nine bits long, it appears in the table once.

            If the symbol is longer than nine bits, then that entry in the table points
            to another similar table for the remaining bits.  Again, there are duplicated
            entries as needed.  The idea is that most of the time the symbol will be short
            and there will only be one table look up.  (That's whole idea behind data
            compression in the first place.)  For the less frequent long symbols, there
            will be two lookups.  If you had a compression method with really long
            symbols, you could have as many levels of lookups as is efficient.  For
            inflate, two is enough.

            So a table entry either points to another table (in which case nine bits in
            the above example are gobbled), or it contains the translation for the symbol
            and the number of bits to gobble.  Then you start again with the next
            ungobbled bit.

            You may wonder: why not just have one lookup table for how ever many bits the
            longest symbol is?  The reason is that if you do that, you end up spending
            more time filling in duplicate symbol entries than you do actually decoding.
            At least for deflate's output that generates new trees every several 10's of
            kbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code
            would take too long if you're only decoding several thousand symbols.  At the
            other extreme, you could make a new table for every bit in the code.  In fact,
            that's essentially a Huffman tree.  But then you spend two much time
            traversing the tree while decoding, even for short symbols.

            So the number of bits for the first lookup table is a trade of the time to
            fill out the table vs. the time spent looking at the second level and above of
            the table.

            Here is an example, scaled down:

            The code being decoded, with 10 symbols, from 1 to 6 bits long:

            A: 0
            B: 10
            C: 1100
            D: 11010
            E: 11011
            F: 11100
            G: 11101
            H: 11110
            I: 111110
            J: 111111

            Let's make the first table three bits long (eight entries):

            000: A,1
            001: A,1
            010: A,1
            011: A,1
            100: B,2
            101: B,2
            110: -> table X (gobble 3 bits)
            111: -> table Y (gobble 3 bits)

            Each entry is what the bits decode as and how many bits that is, i.e. how
            many bits to gobble.  Or the entry points to another table, with the number of
            bits to gobble implicit in the size of the table.

            Table X is two bits long since the longest code starting with 110 is five bits
            long:

            00: C,1
            01: C,1
            10: D,2
            11: E,2

            Table Y is three bits long since the longest code starting with 111 is six
            bits long:

            000: F,2
            001: F,2
            010: G,2
            011: G,2
            100: H,2
            101: H,2
            110: I,3
            111: J,3

            So what we have here are three tables with a total of 20 entries that had to
            be constructed.  That's compared to 64 entries for a single table.  Or
            compared to 16 entries for a Huffman tree (six two entry tables and one four
            entry table).  Assuming that the code ideally represents the probability of
            the symbols, it takes on the average 1.25 lookups per symbol.  That's compared
            to one lookup for the single table, or 1.66 lookups per symbol for the
            Huffman tree.

            There, I think that gives you a picture of what's going on.  For inflate, the
            meaning of a particular symbol is often more than just a letter.  It can be a
            byte (a "literal"), or it can be either a length or a distance which
            indicates a base value and a number of bits to fetch after the code that is
            added to the base value.  Or it might be the special end-of-block code.  The
            data structures created in inftrees.c try to encode all that information
            compactly in the tables.


            Jean-loup Gailly        Mark Adler
            jloup@gzip.org          madler@alumni.caltech.edu


            References:

            [LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
            Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
            pp. 337-343.

            ``DEFLATE Compressed Data Format Specification'' available in
            http://www.ietf.org/rfc/rfc1951.txt

            posted on 2011-01-21 17:11 閱讀(1409) 評(píng)論(0)  編輯 收藏 引用 所屬分類: algorithm
            品成人欧美大片久久国产欧美... 品成人欧美大片久久国产欧美 | 国产99久久久国产精品~~牛| 97精品依人久久久大香线蕉97| 欧美午夜精品久久久久免费视| 欧美一区二区三区久久综| avtt天堂网久久精品| 国产精品美女久久久久AV福利 | 亚洲а∨天堂久久精品9966| 一本色道久久综合狠狠躁篇| 国产成人精品久久| 狠狠色综合网站久久久久久久| 久久综合伊人77777麻豆| 久久免费的精品国产V∧| 2021久久国自产拍精品| 久久天天日天天操综合伊人av| 漂亮人妻被中出中文字幕久久| 精品免费tv久久久久久久| 久久久精品视频免费观看| 久久婷婷国产综合精品| 一级女性全黄久久生活片免费 | 久久中文字幕人妻熟av女| 狠狠狠色丁香婷婷综合久久俺| 合区精品久久久中文字幕一区| 狠狠色丁香婷婷久久综合不卡| 久久国产欧美日韩精品| 久久影院午夜理论片无码| 亚洲国产精品婷婷久久| 国产亚洲欧美精品久久久| 久久国语露脸国产精品电影| 香蕉久久永久视频| 久久涩综合| 久久人妻少妇嫩草AV无码蜜桃| 久久午夜电影网| 日韩精品国产自在久久现线拍| 久久久久99精品成人片试看| 一本大道久久香蕉成人网| 国产亚洲美女精品久久久| 91精品日韩人妻无码久久不卡| 91精品国产综合久久香蕉| 青青青青久久精品国产h| 国产91色综合久久免费|