• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks
            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted on 2016-02-28 21:01 bigrabbit 閱讀(330) 評論(0)  編輯 收藏 引用
            无码精品久久久久久人妻中字| 久久久久国产精品麻豆AR影院| A狠狠久久蜜臀婷色中文网| 久久99精品国产麻豆蜜芽| 久久久久综合国产欧美一区二区| 亚洲乱码日产精品a级毛片久久| 久久亚洲AV成人无码软件| 青青草原精品99久久精品66| 久久精品国产一区二区三区日韩| 日日狠狠久久偷偷色综合0| 久久精品国产99国产精品亚洲| 久久精品国产亚洲AV电影 | 亚洲综合久久综合激情久久| 精品久久人人爽天天玩人人妻| 久久婷婷国产剧情内射白浆| 久久这里只精品国产99热| 亚洲国产成人精品女人久久久 | 久久精品18| 99久久国产精品免费一区二区| 久久精品国产91久久麻豆自制| 亚洲欧洲精品成人久久奇米网| 久久综合狠狠综合久久| 欧美久久一区二区三区| 亚洲国产成人久久综合一| 18岁日韩内射颜射午夜久久成人| 国产精品VIDEOSSEX久久发布| 午夜精品久久久久久久| 一日本道伊人久久综合影| 国产午夜电影久久| 久久久久久免费一区二区三区| 久久久噜噜噜久久中文字幕色伊伊| 久久香蕉国产线看观看99| 久久久久亚洲精品天堂| 久久九九久精品国产免费直播| 久久精品人妻一区二区三区| 狠狠色丁香久久综合五月| 欧美午夜精品久久久久免费视 | 国产精品久久久久久搜索| 久久香蕉超碰97国产精品| 99久久精品免费看国产一区二区三区 | 久久久久久久久久免免费精品|