• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks
            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓(xùn)練集;Extremely randomized trees隨機(jī)選一個(gè)特征和一個(gè)值作為分割標(biāo)準(zhǔn);

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個(gè)特征,每個(gè)特征隨機(jī)選一個(gè)值作為分割標(biāo)準(zhǔn)建樹。

              一種實(shí)現(xiàn)方法:
                     樣本bagging, random n features & random k values ,求最優(yōu),建樹。 

            posted on 2016-02-28 21:01 bigrabbit 閱讀(330) 評論(0)  編輯 收藏 引用
            国产午夜福利精品久久2021 | 国内精品久久久久久不卡影院| 久久这里只有精品18| 国产亚洲精久久久久久无码| 狠狠久久综合| 久久99热精品| 97久久婷婷五月综合色d啪蜜芽| 久久99国产精品久久| 中文字幕日本人妻久久久免费| 久久免费小视频| 久久婷婷国产综合精品| 久久精品国产WWW456C0M| 久久久久人妻精品一区二区三区| 狠狠色丁香婷婷综合久久来来去| 久久久久99精品成人片直播| 久久亚洲精品无码播放| 久久精品国产99国产精品澳门| 国产精品久久久久免费a∨| 国产精品九九久久精品女同亚洲欧美日韩综合区 | 99久久精品国产免看国产一区| 亚洲&#228;v永久无码精品天堂久久| 久久亚洲精品中文字幕| 久久只这里是精品66| 久久噜噜久久久精品66| 久久综合九色综合久99| 国产精品99久久免费观看| 久久婷婷午色综合夜啪| 久久中文字幕视频、最近更新 | 久久中文字幕一区二区| 久久亚洲国产成人精品性色| 久久人人爽人人爽人人av东京热| 久久天天躁狠狠躁夜夜av浪潮 | 日韩人妻无码精品久久久不卡| 久久亚洲熟女cc98cm| 最新久久免费视频| 久久只有这精品99| 亚洲乱码精品久久久久..| 亚洲国产精品久久久天堂| 久久精品麻豆日日躁夜夜躁| 久久青青草原亚洲av无码app| 久久精品亚洲一区二区三区浴池|