• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            a tutorial on computer science

              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理 ::
              21 隨筆 :: 0 文章 :: 17 評論 :: 0 Trackbacks
            stander random forest:  random K features, enum all values as split, find best split.

            LINKS:https://en.wikipedia.org/wiki/Random_forest


            Extremely randomized trees: random K features, random a split value, find best split.
            ensemble Extremely randomized trees: use all data.

            LINKS:http://docs.opencv.org/2.4/modules/ml/doc/ertrees.html

            1. Extremely randomized trees don’t apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
            2. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.

              Extremely randomized trees用了所有的樣本作為訓練集;Extremely randomized trees隨機選一個特征和一個值作為分割標準;

              LINKS:http://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor

              This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.

              Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the 
              max_features randomly selected features and the best split among those is chosen. When max_features is set 1, this amounts to building a totally random decision tree.

              extra-trees 的ensemble用了bagging,然后選取多個特征,每個特征隨機選一個值作為分割標準建樹。

              一種實現方法:
                     樣本bagging, random n features & random k values ,求最優,建樹。 

            posted on 2016-02-28 21:01 bigrabbit 閱讀(338) 評論(0)  編輯 收藏 引用
            久久精品综合一区二区三区| 久久久久久精品无码人妻| 婷婷综合久久狠狠色99h| 国产激情久久久久影院老熟女免费 | 久久最新精品国产| 亚洲欧美另类日本久久国产真实乱对白| 人妻无码精品久久亚瑟影视| 久久精品国产亚洲AV香蕉| 国产精品欧美久久久久无广告| 99久久国产宗和精品1上映| 亚洲国产精品婷婷久久| 日韩精品久久久肉伦网站| 久久久免费观成人影院| 国产精品一区二区久久不卡| 久久亚洲AV无码精品色午夜麻豆| 久久伊人精品青青草原高清| 国产毛片欧美毛片久久久| 精品无码久久久久久国产| 久久久久高潮毛片免费全部播放| 一级a性色生活片久久无| segui久久国产精品| 国产一区二区精品久久| 久久久精品人妻一区二区三区四 | 精品久久久久国产免费| 国内精品伊人久久久久| 久久夜色精品国产欧美乱| 精品久久人人爽天天玩人人妻| 久久强奷乱码老熟女| 久久亚洲国产成人影院网站| 精品乱码久久久久久夜夜嗨 | 中文国产成人精品久久不卡| 香蕉久久久久久狠狠色| 青草久久久国产线免观| 一本色道久久综合狠狠躁篇| 麻豆久久久9性大片| 亚洲午夜精品久久久久久app| 久久久亚洲精品蜜桃臀| 伊人久久精品影院| 中文字幕精品久久| 中文字幕乱码久久午夜| 性欧美丰满熟妇XXXX性久久久 |