青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

posts - 43,  comments - 64,  trackbacks - 0

注:本文的代碼圖片資料選自NVIDIA CUDAProgramming Guide,原作者保留所有著作權。

  NVIDIA近日終于發布了CUDA,有可能作為下一代SDK10的一部分奉送給樂于發掘GPU計算能力的專業人員。感興趣的朋友可以去這里一探究竟,下載嘗鮮,提供了大量的范例。
  我們都知道,GPU的并行運算性能是極為強悍的,如此豐富的計算資源如果浪費著不用,就用來跑跑游戲是遠遠不行的。而傳統的圖形API又單單的只提供了圖形操作的功能,沒有提供類似于CPU那樣通用計算的接口,所以說以往的方法都是很麻煩而且需要相當的經驗的 —— 比如用HDR圖片作Cube Map的時候,如果使用的是Paul提供的那種類似于經緯圖的紋理,就需要大量的反三角函數的計算,而用Vertex Shader作反三角又太浪費時間,于是人們用1D紋理作線性插值查找表進行快速計算(訪問數據紋理)。這個例子也可以看作是最基本的GPU計算。


CUDA的誕生
  使用傳統API進行計算是個不可挽回的錯誤,CUDA的出現將改變這一狀況。CUDA主要在驅動程序方面和函數庫方面進行了擴充。在CUDA庫中提供了標準的FFT與BLAS庫,一個為NVDIA GPU設計的C編譯器。CUDA的特色如下,引自NVIDIA的官方說明:
    1、為并行計算設計的統一硬件軟件架構。有可能在G80系列上得到發揮。
    2、在GPU內部實現數據緩存和多線程管理。這個強,思路有些類似于XB360 PS3上的CPU編程。
    3、在GPU上可以使用標準C語言進行編寫。
    4、標準離散FFT庫和BLAS基本線性代數計算庫。
    5、一套CUDA計算驅動。
    6、提供從CPU到GPU的加速數據上傳性能。瓶頸就在于此。
    7、CUDA驅動可以和OpenGL DirectX驅動交互操作。這強,估計也可以直接操作渲染管線。
    8、與SLI配合實現多硬件核心并行計算。
    9、同時支持Linux和Windows。這個就是噱頭了
  看過了宣傳,您可以看一下CUDA提供的Programming Guide和其他的文檔。NVIDIA我覺得有些類似圖形界的Microsoft,提供精良的裝備諸如SDK和開發文檔等等,比ATi好多了。

CUDA本質
  CUDA的本質是,NVIDIA為自家的GPU編寫了一套編譯器NVCC極其相關的庫文件。CUDA的應用程序擴展名可以選擇是.cu,而不是.cpp等。NVCC是一個預處理器和編譯器的混合體。當遇到CUDA代碼的時候,自動編譯為GPU執行的代碼,也就是生成調用CUDA Driver的代碼。如果碰到Host C++代碼,則調用平臺自己的C++編譯器進行編譯,比如Visual Studio C++自己的Microsoft C++ Compiler。然后調用Linker把編譯好的模塊組合在一起,和CUDA庫與標準C\C++庫鏈接成為最終的CUDA Application。由此可見,NVCC模仿了類似于GCC一樣的通用編譯器的工作原理(GCC編譯C\C++代碼本質上就是調用cc和g++)。NVCC有著復雜的選項,詳情參閱CUDA SDK中的NVCC相關文檔。

CUDA編程概念
Device
  CUDA API提供接口枚舉出系統中可以作為計算設備使用的硬件為計算進行初始化等操作。類似于DX編程中的初始化COM接口。

Texture
  線性內存中的數據和數組中的數據都可以作為紋理使用。不過數組在緩存層面上更適合優化。紋理的概念類似于傳統的圖像紋理,可以以8 16 32位的整數儲存,也可以用fp16格式進行儲存。而且當把數組轉換為紋理的時候,還有一些有點,比如整數與fp16數字可以選擇統一的轉換到32bit浮點數,還可以使用數組邊界這個特性,還可以進行過濾操作。

OpenGL/DirectX Interoperability
  OpenGL的幀緩沖與DirectX9的頂點緩沖可以被映射到CUDA可操作的地址空間中,讓CUDA讀寫幀緩沖里面的數據。不過CUDA Context一次只能操作一個Direct3D設備。當前CUDA還不支持對DX10進行類似的操作,除了DX9頂點緩沖也不允許進行映射,而且一次只能映射一次。(這個地方NVIDIA沒有說清楚,我估計是指只有一個Mapping Slot)

Thread Block
A thread block is a batch of threads that can cooperate together by efficiently sharing data through some fast shared memory and synchronizing their execution to coordinate memory accesses.
  ThreadBlock由一系列線程組成,這些線程可以快速共享內存,同步內存訪問。每個線程都有個ID,這個ID好像平面坐標一般。線程組成Grid。示意圖如下:

CudaThread.PNG


Memory Model
A thread that executes on the device has only access to the device’s DRAM and on-chip memory through the following memory spaces:
? Read-write per-thread registers,
? Read-write per-thread local memory,
? Read-write per-block shared memory,
? Read-write per-grid global memory,
? Read-only per-grid constant memory,
? Read-only per-grid texture memory.
The global, constant, and texture memory spaces can be read from or written to by the host and are persistent across kernel calls by the same application.
  在CUDA中我們要接觸到的內存主要有:寄存器,Local內存,Shared內存,Global內存,Constant內存,Texture內存。 有些類似于C內存的分配類型了。而且內存可以分配為數組或者是普通線性內存,CUDA提供API可以正確的進行內存拷貝等操作。

cudamemory.PNG


  后面我們將談到如何優化GPU內存。從上面的資料我們可以看出,這里的Grid概念類似于Process,也就是為線程執行分配資源的單元,而只有線程是真正計算的部分。Local Memory類似線程的棧。Texture Memory類似于堆內存區。

具體操作
  我以CUDA附帶的simpleCUBLAS作為例子。
#include?<stdio.h>
#include?
<stdlib.h>
#include?
<string.h>

/*?Includes,?cuda?*/
#include?
"cublas.h"

/*?Matrix?size?*/
#define?N??(275)

/*?Host?implementation?of?a?simple?version?of?sgemm?*///使用CPU進行Matrix乘法計算的算式
static?void?simple_sgemm(int?n,?float?alpha,?const?float?*A,?const?float?*B,
?????????????????????????
float?beta,?float?*C)
{
????
int?i;
????
int?j;
????
int?k;
????
for?(i?=?0;?i?<?n;?++i)?{
????????
for?(j?=?0;?j?<?n;?++j)?{
????????????
float?prod?=?0;
????????????
for?(k?=?0;?k?<?n;?++k)?{
????????????????prod?
+=?A[k?*?n?+?i]?*?B[j?*?n?+?k];
????????????}

????????????C[j?
*?n?+?i]?=?alpha?*?prod?+?beta?*?C[j?*?n?+?i];
????????}

????}

}


/*?Main?*/
int?main(int?argc,?char**?argv)
{????
????cublasStatus?status;
????
float*?h_A;
????
float*?h_B;
????
float*?h_C;
????
float*?h_C_ref;
????
float*?d_A?=?0;
????
float*?d_B?=?0;
????
float*?d_C?=?0;
????
float?alpha?=?1.0f;
????
float?beta?=?0.0f;
????
int?n2?=?N?*?N;
????
int?i;
????
float?error_norm;
????
float?ref_norm;
????
float?diff;

????
/*?Initialize?CUBLAS?*///初始化CUBLAS庫
????status?
=?cublasInit();
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?CUBLAS?initialization?error\n");
????????
return?EXIT_FAILURE;
????}


????
/*?Allocate?host?memory?for?the?matrices?*///分配內存,這3個是257*257的大矩陣
????h_A?
=?(float*)malloc(n2?*?sizeof(h_A[0]));
????
if?(h_A?==?0)?{
????????fprintf?(stderr,?
"!!!!?host?memory?allocation?error?(A)\n");
????????
return?EXIT_FAILURE;
????}

????h_B?
=?(float*)malloc(n2?*?sizeof(h_B[0]));
????
if?(h_B?==?0)?{
????????fprintf?(stderr,?
"!!!!?host?memory?allocation?error?(B)\n");
????????
return?EXIT_FAILURE;
????}

????h_C?
=?(float*)malloc(n2?*?sizeof(h_C[0]));
????
if?(h_C?==?0)?{
????????fprintf?(stderr,?
"!!!!?host?memory?allocation?error?(C)\n");
????????
return?EXIT_FAILURE;
????}


????
/*?Fill?the?matrices?with?test?data?*/
????
for?(i?=?0;?i?<?n2;?i++)?{
????????h_A[i]?
=?rand()?/?(float)RAND_MAX;
????????h_B[i]?
=?rand()?/?(float)RAND_MAX;
????????h_C[i]?
=?rand()?/?(float)RAND_MAX;
????}


????
/*?Allocate?device?memory?for?the?matrices?*/ //在GPU設備上分配內存
????status?
=?cublasAlloc(n2,?sizeof(d_A[0]),?(void**)&d_A);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?device?memory?allocation?error?(A)\n");
????????
return?EXIT_FAILURE;
????}

????status?
=?cublasAlloc(n2,?sizeof(d_B[0]),?(void**)&d_B);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?device?memory?allocation?error?(B)\n");
????????
return?EXIT_FAILURE;
????}

????status?
=?cublasAlloc(n2,?sizeof(d_C[0]),?(void**)&d_C);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?device?memory?allocation?error?(C)\n");
????????
return?EXIT_FAILURE;
????}


????
/*?Initialize?the?device?matrices?with?the?host?matrices?*/ //把HOST內的矩陣上傳到GPU去
????status?
=?cublasSetVector(n2,?sizeof(h_A[0]),?h_A,?1,?d_A,?1);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?device?access?error?(write?A)\n");
????????
return?EXIT_FAILURE;
????}

????status?
=?cublasSetVector(n2,?sizeof(h_B[0]),?h_B,?1,?d_B,?1);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?device?access?error?(write?B)\n");
????????
return?EXIT_FAILURE;
????}

????status?
=?cublasSetVector(n2,?sizeof(h_C[0]),?h_C,?1,?d_C,?1);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?device?access?error?(write?C)\n");
????????
return?EXIT_FAILURE;
????}

????
????
/*?Performs?operation?using?plain?C?code?*/ //使用CPU進行矩陣乘法計算
????simple_sgemm(N,?alpha,?h_A,?h_B,?beta,?h_C);
????h_C_ref?
=?h_C;

????
/*?Clear?last?error?*/
????cublasGetError();

????
/*?Performs?operation?using?cublas?*/ //Wow !使用GPU計算
????cublasSgemm(
'n',?'n',?N,?N,?N,?alpha,?d_A,?N,?d_B,?N,?beta,?d_C,?N);
????status?
=?cublasGetError();
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?kernel?execution?error.\n");
????????
return?EXIT_FAILURE;
????}

????
????
/*?Allocate?host?memory?for?reading?back?the?result?from?device?memory?*/ //分配HOST內存準備存放結果
????h_C?
=?(float*)malloc(n2?*?sizeof(h_C[0]));
????
if?(h_C?==?0)?{
????????fprintf?(stderr,?
"!!!!?host?memory?allocation?error?(C)\n");
????????
return?EXIT_FAILURE;
????}


????
/*?Read?the?result?back?*/ //回讀
????status?
=?cublasGetVector(n2,?sizeof(h_C[0]),?d_C,?1,?h_C,?1);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?device?access?error?(read?C)\n");
????????
return?EXIT_FAILURE;
????}


????
/*?Check?result?against?reference?*/
????error_norm?
=?0;
????ref_norm?
=?0;
????
for?(i?=?0;?i?<?n2;?++i)?{
????????diff?
=?h_C_ref[i]?-?h_C[i];
????????error_norm?
+=?diff?*?diff;
????????ref_norm?
+=?h_C_ref[i]?*?h_C_ref[i];
????}

????error_norm?
=?(float)sqrt((double)error_norm);
????ref_norm?
=?(float)sqrt((double)ref_norm);
????
if?(fabs(ref_norm)?<?1e-7)?{
????????fprintf?(stderr,?
"!!!!?reference?norm?is?0\n");
????????
return?EXIT_FAILURE;
????}

????printf(?
"Test?%s\n",?(error_norm?/?ref_norm?<?1e-6f)???"PASSED"?:?"FAILED");

????
/*?Memory?clean?up?*/
????free(h_A);
????free(h_B);
????free(h_C);
????free(h_C_ref);
????status?
=?cublasFree(d_A);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?memory?free?error?(A)\n");
????????
return?EXIT_FAILURE;
????}

????status?
=?cublasFree(d_B);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?memory?free?error?(B)\n");
????????
return?EXIT_FAILURE;
????}

????status?
=?cublasFree(d_C);
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?memory?free?error?(C)\n");
????????
return?EXIT_FAILURE;
????}


????
/*?Shutdown?*///關閉CUBLAS卸載資源
????status?
=?cublasShutdown();
????
if?(status?!=?CUBLAS_STATUS_SUCCESS)?{
????????fprintf?(stderr,?
"!!!!?shutdown?error?(A)\n");
????????
return?EXIT_FAILURE;
????}


????
if?(argc?<=?1?||?strcmp(argv[1],?"-noprompt"))?{
????????printf(
"\nPress?ENTER?to?exit\n");
????????getchar();
????}

????
return?EXIT_SUCCESS;
}


  除了那些個容錯的代碼,我們可以看出使用CUBLAS庫進行計算還是非常簡潔直觀的。詳細的資料請看CUDA SDK自帶的范例。

我的展望
  ATi(AMD)坐不住的,應該會積極開發CPU與GPU融合的相關組建。
  瓶頸在CPU - GPU帶寬上,NV很有可能推出優化過的nForce芯片組提供高帶寬。
  用ICE配上CUDA組成分布式的GPU計算平臺怎么樣?!大伙不妨暢想暢想。
  下一代BOINC計算平臺內的項目能夠提供基于GPU的計算客戶端。
posted on 2007-02-24 14:42 周波 閱讀(4566) 評論(6)  編輯 收藏 引用 所屬分類: Cg藝術無庸技術 、奇思妙想

FeedBack:
# re: Pure GPU Computing Platform : NVIDIA CUDA Tutorial
2007-02-24 22:58 | lai3d
CUDA stands for Compute Unified Device Architecture and is a new hardware and software architecture for issuing and managing computations on the GPU as a data-parallel computing device without the need of mapping them to a graphics API. It is available for the GeForce 8800 Series and beyond.

8800及以上才支持啊,看來暫時不用考慮在游戲引擎里應用  回復  更多評論
  
# re: Pure GPU Computing Platform : NVIDIA CUDA Tutorial
2007-02-24 23:54 | Jedimaster
不過我的6200A NV44A也可以運行調試版本的DEMO...而且我沒有安裝推薦的驅動程序。估計有向下兼容的考慮。畢竟架構沒有太大的變化。  回復  更多評論
  
# re: Pure GPU Computing Platform : NVIDIA CUDA Tutorial
2007-02-26 11:25 | 空明流轉
我用的是A卡。。。
觀望中,準備將目前手里的項目用CUDA和普通的分布式程序都實現一下。
實際上CUDA主要是為Workstation提供更加強勁的計算能力,至于游戲嘛,按照目前的顯卡速度,對于新的游戲,主要還是用于應付渲染了,想有足夠多余的資源參與常規運算,還不太現實。  回復  更多評論
  
# re: Pure GPU Computing Platform : NVIDIA CUDA Tutorial
2007-02-26 19:46 | Jedimaster
@空明流轉
前幾天去了下德國BOINC論壇,把這個想法和德國人交流了一下,引用了一篇回復。

Zitat:
Zitat von Jedimaster Beitrag anzeigen
NVIDIA has released the CUDA, a parrallel library use NVIDIA GPU.
I also got interested in it but unfortunately it seems to work solely with GeForce 8 series.

Zitat:
if we can supply client program use GPU & CPU, maybe we can highly improve our speed.
Sure we could but when some projects released their applications as open source some people started to recompile them optimized (making use of MMX, SSE, all kinds of technologies the original binaries still lack). This had mainly 2 effects:

1. People started using "optimized" core-clients (manipulated to demand a multiple of credits since they are calculated by CPU time which has been decreased by optimizations). From my point of view these people just did not understand the credit system although demanding more credits for completing 2 WUs in the time of one unoptimized may seem reasonable.

2. and more dramatic: Some projects noticed a large discrepancy in the returned results. I think it was Einstein@Home that first asked their users not to use optimized clients. That caused problems at validation when erroneous results should have been sorted out. I don't know what the accuracy of GPU-based calculations is.

Zitat:
Sorry for my poor German, entschuldigung.
Shouldn't matter too much for most users here.


Kurz nochmal auf Deutsch: Jedimaster schlägt vor, daß man die kürzlich von NVIDIA freigegebene Bibliothek CUDA für GPU-basierte Berechnungen von z.B. Fouriertransformationen etc. benutzen könnte um die Anwendungen drastisch zu optimieren. Ich habe daraufhin geantwortet, daß CUDA nur mit der GeForce 8-Reihe zusammenarbeitet und derartige Berechnungen wie einst die MMX/SSE-Optimierungen Einbrüche bei der Genauigkeit zur Folge haben könnten, die zu denselben Problemen wie schon bei Einstein im Validator-Prozess führen könnten. Darüberhinaus würden wieder mehr "optimierte" Core-Clients zum Einsatz kommen.

德國人認為把CUDA等等技術用于分布式計算,在數值的有效性上還欠妥,甚至連專門為CPU優化的程序都不推薦實用。結合目前G8系列還沒有上市,而且相關的中間件還不夠成熟,可能開發相應的程序還不是很現實。

為了應付游戲還是有些浪費,這邊物理卡剛出來,Havok就又來湊熱鬧了,SM2人們用的正順手,SM3早就到來了。還是把優化工作做好先。  回復  更多評論
  
# re: Pure GPU Computing Platform : NVIDIA CUDA Tutorial
2007-08-15 20:02 | sdfsdfsdf
would be nice to read your site in english..  回復  更多評論
  
# re: Pure GPU Computing Platform : NVIDIA CUDA Tutorial
2007-08-23 15:18 | Dimitris
@Jedimaster
As long as accuracy is concerned, cuda complies with the error margin specifications (except for doubles i believe). There is are alot of SDK examples on their site with reference execution comparison, only once it failed to pass but the accuracy threshold was pretty tight! I'm using it now on computational physics thesis.

For starters i just ported a simple random number generator to the gpu, the results were identical to the digits i cared about (6th crucial). Mind though that i had to convert it to float!
Double should be working on CUDA 1.0 i think, but they didnt work for me, it wouldnt assign the value at all when double.
I didnt even bother parallelizing it, just a 1x1 block and It was WAY OVER a magnitude faster. I'm impressed. All that with a 8600GTS.  回復  更多評論
  
<2007年2月>
28293031123
45678910
11121314151617
18192021222324
25262728123
45678910

周波 87年出生 南京林業大學05421班242信箱 專業木材科學與工程工業裝備與過程自動化 遷移到 jedimaster(dot)cnblogs(dot)com

常用鏈接

留言簿(4)

隨筆分類

隨筆檔案

新聞檔案

同學們Blog

搜索

  •  

積分與排名

  • 積分 - 55423
  • 排名 - 421

最新評論

閱讀排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美日韩一区二区视频在线| 欧美精品三区| 国产精品国产福利国产秒拍| 欧美1级日本1级| 浪潮色综合久久天堂| 久久精品网址| 久久久国产成人精品| 久久疯狂做爰流白浆xx| 久久精品女人| 欧美成人免费在线视频| 欧美日韩国产免费| 国产精品三级视频| 今天的高清视频免费播放成人| 极品少妇一区二区三区精品视频| 亚洲国产精品精华液网站| 日韩午夜激情av| 香蕉久久国产| 欧美黄色片免费观看| 夜夜嗨av一区二区三区四季av | 国产农村妇女毛片精品久久莱园子| 国产精品久久久久久久7电影| 国产日韩欧美中文| 亚洲国产欧美一区| 亚洲一区视频在线观看视频| 久久精品99久久香蕉国产色戒| 欧美福利电影网| 中文一区二区在线观看| 久久激五月天综合精品| 裸体丰满少妇做受久久99精品| 久久久噜噜噜久久人人看| 欧美激情在线观看| 国产综合色精品一区二区三区| 亚洲精品乱码久久久久久蜜桃麻豆 | 国产亚洲日本欧美韩国| 亚洲国产一区二区三区高清| 亚洲欧美日韩在线高清直播| 米奇777在线欧美播放| 宅男噜噜噜66国产日韩在线观看| 久久国产高清| 国产精品乱子乱xxxx| 亚洲国产裸拍裸体视频在线观看乱了中文 | 亚洲人成77777在线观看网| 亚洲伦理在线免费看| 欧美伊久线香蕉线新在线| 亚洲激情另类| 欧美在线免费一级片| 国产精品国产三级国产| 亚洲精品网址在线观看| 久久久久9999亚洲精品| 亚洲视频一区二区| 欧美日韩在线影院| 国产欧美一区二区精品性色| 亚洲精品一区在线观看香蕉| 欧美**人妖| 久久嫩草精品久久久精品一| 国产精品一区二区在线| 亚洲尤物视频在线| 一区二区冒白浆视频| 欧美激情综合网| 亚洲美女免费精品视频在线观看| 久久婷婷色综合| 久久国产高清| 激情久久一区| 久久夜色撩人精品| 久久精品日产第一区二区三区| 国产精品一区二区三区四区五区| 亚洲欧美色婷婷| 亚洲一区二区三区色| 国产精品久久久久婷婷| 亚洲一区二区高清| 亚洲手机视频| 在线视频欧美日韩精品| 一区二区三区精品国产| 欧美视频在线不卡| 亚洲免费小视频| 亚洲伊人网站| 国产一区二区久久久| 久久久亚洲高清| 久久天天狠狠| 亚洲免费播放| 亚洲婷婷在线| 国产亚洲观看| 欧美激情第3页| 欧美日韩免费在线观看| 午夜精品久久久久久99热软件| 亚洲已满18点击进入久久| 国内精品国产成人| 亚洲欧洲在线一区| 国产精品免费网站| 久久综合伊人77777尤物| 欧美mv日韩mv国产网站| 亚洲午夜精品视频| 欧美一区视频在线| 亚洲精品免费观看| 亚洲综合国产| 亚洲国产精品久久久| 亚洲乱码国产乱码精品精可以看| 国产精品毛片在线| 亚洲激情一区二区三区| 国产婷婷色一区二区三区| 欧美国产免费| 国产欧美日韩综合精品二区| 欧美激情一区二区久久久| 国产精品黄色在线观看| 欧美激情在线狂野欧美精品| 国产精品一区二区三区观看| 亚洲破处大片| 1024成人网色www| 亚洲亚洲精品在线观看 | 欧美激情亚洲一区| 国产精品婷婷| 日韩一区二区精品葵司在线| 在线高清一区| 欧美一二区视频| 亚洲欧美日韩国产综合| 欧美国产精品人人做人人爱| 久久噜噜噜精品国产亚洲综合| 欧美日韩中文字幕在线| 欧美成人在线网站| 精品动漫3d一区二区三区免费| 一区二区三区日韩精品视频| 日韩视频中文| 欧美国产91| 亚洲第一在线| 亚洲东热激情| 久久久综合网| 美女视频黄免费的久久| 国产精品五区| 一区二区三区精品视频在线观看| 91久久精品一区二区三区| 久久视频国产精品免费视频在线| 欧美久久在线| 一区二区三区视频在线| 亚洲免费一在线| 欧美区在线播放| 美女91精品| 国产亚洲一区二区三区| aⅴ色国产欧美| av成人免费| 欧美巨乳波霸| 亚洲精品123区| 亚洲国产国产亚洲一二三| 午夜日本精品| 美女亚洲精品| 激情懂色av一区av二区av| 亚洲一本视频| 亚洲欧美日韩爽爽影院| 久久久久久夜| 亚洲国产成人在线| 在线精品视频在线观看高清| 欧美在线一二三四区| 欧美影院在线播放| 欧美日韩久久精品| 亚洲精品国产无天堂网2021| 91久久极品少妇xxxxⅹ软件| 久久久另类综合| 久久一日本道色综合久久| 亚洲激情欧美| 你懂的视频一区二区| 欧美激情综合| 99re热这里只有精品免费视频| 午夜一区二区三区不卡视频| 免费不卡中文字幕视频| 亚洲电影自拍| 欧美激情亚洲另类| 亚洲精品视频在线观看免费| 欧美一区二区大片| 国产一区二区丝袜高跟鞋图片 | 亚洲黄色三级| 这里只有精品电影| 国产精品久久久久一区二区三区| 亚洲素人一区二区| 韩国av一区二区三区四区| 欧美mv日韩mv亚洲| 亚洲精品国产日韩| 欧美亚洲在线视频| 国模套图日韩精品一区二区| 欧美日韩免费在线| 亚洲一区综合| 久久人人看视频| 91久久久亚洲精品| 欧美日韩国内自拍| 亚洲欧美国产精品va在线观看| 午夜精品一区二区三区四区 | 激情文学一区| 欧美va亚洲va国产综合| 午夜伦欧美伦电影理论片| 美国十次了思思久久精品导航| 亚洲精品乱码久久久久| 国产精品国产三级国产专区53 | 国产日韩精品一区| 欧美日韩成人综合| 欧美亚洲一区| 亚洲女性裸体视频| 日韩视频一区二区三区| 欧美一二三视频| 在线精品一区| 欧美jizz19性欧美| 玖玖玖国产精品| 亚洲永久免费观看|