• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            Tim's Programming Space  
            Tim's Programming Space
            日歷
            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345
            統計
            • 隨筆 - 20
            • 文章 - 1
            • 評論 - 40
            • 引用 - 0

            導航

            常用鏈接

            留言簿(3)

            隨筆檔案

            文章檔案

            搜索

            •  

            最新評論

            閱讀排行榜

            評論排行榜

             

            The Alliances

            In a fantasy world, there is a large island of a rectangular shape. The sides of the island happen to be exactly R miles and C miles long, and the whole island is divided into a grid of R\times C areas. Some of the areas are uninhabited, and the rest are occupied by villages of fantasy beings: elves, humans, dwarves, and hobbits. Each area contains at most one village. Two villages are considered neighbours if their areas share a side.

            Recently, the villages became terrified of the Great Evil. In order to feel safer, each village has decided to form military alliances with some of its neighbours. An alliance always involves two neighbouring villages, and it is a mutual and symmetric agreement.

            Depending on the species living in the village, the inhabitants will not feel safe unless a specific configuration of alliances is formed:

            • The elves feel confident, and therefore need exactly one alliance.
            • Human villages require alliances with exactly two neighbours.
              Moreover, leaving two opposite sides of the village exposed is bad for tactical reasons. Therefore the two allied neighbours cannot be located on opposite sides of the village.
            • Dwarves require alliances with exactly three neighbours.
            • Hobbits are extremely scared, and therefore need to have alliances with all four of their neighbours.

            In other words, except for humans each village requires a particular number of alliances, but does not care which neighbours will be its allies. For humans there is an additional restriction: the allied neighbours must not be on opposite sides of the village.

            The conditions must be fulfilled irrespective of the position of the village on the map. For example, a dwarf village desires three alliances. If it is located on the coast, this means that it must have alliances with all three neighbours. If there is a dwarf village in a corner of the island, its inhabitants will never feel safe.

            Task specification

            For a given island description, your task is to decide whether it is possible to form alliances so that all inhabitants of the island will feel safe. In case of a positive answer, your task is also to suggest one viable configuration of alliances. In case of multiple solutions, choose an arbitrary one.

            Input specification

            The first line of the input contains two integers R and C specifying the size of the island. The following R lines encode a description of the island. Each line consists of C space-separated numbers between 0 and 4:

            • 0 means uninhabited area,
            • 1 means an elf village,
            • 2 means a human village,
            • 3 means a dwarf village.
            • 4 means a hobbit village,

            (Note that the number in the input always corresponds to the number of desired alliances for that village.)

            Constraints

            In all test cases assume that 1 \leq R,C \leq 70.

            In test cases worth a total of 55 points we have \min(R,C) \leq 10. Out of these, in test cases worth 15 points R\cdot C \leq 20.

            Another batch of test cases worth 10 points contains maps with only uninhabited areas and human villages. (This batch is not included in the test cases worth 55 points.)

            Output specification

            If there is no solution, output a single line with the string "Impossible!" (quotes for clarity). Otherwise, output one valid map of alliances in the following format.

            Each area should appear in the output as a matrix of 3 \times 3 characters. If the area is uninhabited, the corresponding section of the output will be filled with . (dot) symbols. If the area has a village there should be a a symbol O (uppercase letter O) in the middle representing the village itself, and there should be symbols X (uppercase letter X) representing a configuration of its allies. The rest of the 3\times 3 matrix should be filled with . (dot) symbols.

            For each village type, all possible layouts of alliances are shown in the image below.

            Examples

            input:

            3 4
            2 3 2 0
            3 4 3 0
            2 3 3 1

            output:

            ............
            .OXXOXXO....
            .X..X..X....
            .X..X..X....
            .OXXOXXO....
            .X..X..X....
            .X..X..X....
            .OXXOXXOXXO.
            ............

            input:

            1 2
            2 1

            output:

            Impossible!


            這是 CEOI2010 當場唯一會做的。。。
            題目大意是:告訴一個70*70的格子里面每個點的度,每個格子只能往四周的四個格子連邊,邊是雙向的,對于度為2的點所連的兩條邊不能在一條直線上,求出一組方案。
            ============================
            如果沒有對度為2的點連邊的限制的話,就把格子黑白染色,建二分圖,相鄰的點連容量為1的邊,黑點連源,白點連匯,容量都為要求的度。流之即可。
            加上對度為2的點連邊的限制,這樣的方法出現的問題在于沒法處理這個問題了。
            但我們發現,對于度為2的點的限制可以化為:橫向或者縱向都有且只有一條邊,于是把度為2的點拆成橫的和豎的兩個點就行了。

            /*
             * $File: alliances.cpp
             * $Date: Thu Jul 15 11:18:14 2010 +0800
             * $Prob: CEOI 2010 The Alliances
             * $Author: Tim
             * $Addr: 
            http://riesky.sk/ceoi2010/problem.php?contest=CEOI%202010%20Day%201&problem=alliances
             
            */

            #include 
            <cstdio>
            #include 
            <cstring>
            #include 
            <cstdlib>

            #define MAXL 71
            #define MAXN (MAXL * MAXL * 2 + 10)
            #define MAXM (MAXN * 4 + MAXN + MAXN) * 2


            #define INFINITE 0x3f3f3f3f
            #define MIN(a, b) ((a) < (b) ? (a) : (b))
            #define OP(x) ((((x) - 1) ^ 1) + 1)

            #define OP_DIR(x) ((x + 2) & 3)

            using namespace std;

            const int fx[] = {010-1};
            const int fy[] = {10-10};
            const int UP    = 3,
                      DOWN    
            = 1,
                      LEFT    
            = 2,
                      RIGHT 
            = 0;


            int map[MAXL + 1][MAXL + 1];
            int n, m;
            void Init()
            {
                scanf(
            "%d%d"&n, &m);
                
            for (int i = 0; i < n; i ++)
                    
            for (int j = 0; j < m; j ++)
                        scanf(
            "%d"&map[i][j]);
            }

            int N = 2, S = 0, T = 1;
            int id[MAXL + 1][MAXL + 1][2];
            int ID(int x, int y, int flag)
            {
                
            if (id[x][y][flag])
                    
            return id[x][y][flag];
                
            return id[x][y][flag] = N ++;
            }

            int edge_id[MAXL + 1][MAXL + 1][4];
            int Count = 0;
            int begin[MAXN + 1], end[MAXM + 1], next[MAXM + 1], c[MAXM + 1];
            void AddEdge(int a, int b, int f)
            {
                Count 
            ++;
                next[Count] 
            = begin[a];
                begin[a] 
            = Count;
                end[Count] 
            = b;
                c[Count] 
            = f;

                Count 
            ++;
                next[Count] 
            = begin[b];
                begin[b] 
            = Count;
                end[Count] 
            = a;
                c[Count] 
            = 0;
            }

            int tot_flow[2];
            void BuildGraph()
            {
                    
            for (int i = 0; i < n; i ++)
                    
            for (int j = 0; j < m; j ++)
                        
            if (map[i][j])
                        {
                            
            if ((i + j) & 1)
                            {
                                
            for (int k = 0; k < 4; k ++)
                                {
                                    
            int x = i + fx[k], y = j + fy[k];
                                    
            if (x >= 0 && x < n && y >= 0 && y < m && map[x][y])
                                    {
                                        AddEdge(ID(i, j, (map[i][j] 
            == 2 ? (k & 1) : 0)), 
                                                ID(x, y, (map[x][y] 
            == 2 ? (k & 1) : 0)),
                                                
            1);
                                        edge_id[i][j][k] 
            = edge_id[x][y][OP_DIR(k)] = Count;
                                    }
                                }
                                
            if (map[i][j] == 2)
                                {
                                    AddEdge(S, ID(i, j, 
            0), 1);
                                    AddEdge(S, ID(i, j, 
            1), 1);
                                }
                                
            else
                                    AddEdge(S, ID(i, j, 
            0), map[i][j]);
                            }
                            
            else
                            {
                                
            if (map[i][j] == 2)
                                {
                                    AddEdge(ID(i, j, 
            0), T, 1);
                                    AddEdge(ID(i, j, 
            1), T, 1);
                                }
                                
            else
                                    AddEdge(ID(i, j, 
            0), T, map[i][j]);
                            }
                            tot_flow[(i 
            + j) & 1+= map[i][j];
                        }
            }
            int cur[MAXN + 1], d[MAXN + 1], pre[MAXN + 1], a[MAXN + 1], cnt[MAXN + 1];
            int sap()
            {
                
            int flow = 0, now, tmp, u;
                a[u 
            = S] = INFINITE;
                cnt[
            0= N;
                memcpy(cur, begin, 
            sizeof(begin[0]) * N);
                
            while (d[S] < N)
                {
                    
            for (now = cur[u]; now; now = next[now])
                        
            if (c[now] && d[u] == d[end[now]] + 1)
                            
            break;
                    
            if (now)
                    {
                        tmp 
            = end[now];
                        pre[tmp] 
            = cur[u] = now;
                        a[tmp] 
            = MIN(a[u], c[now]);
                        
            if ((u = tmp) == T)
                        {
                            flow 
            += (tmp = a[T]);
                            
            do
                            {
                                c[pre[u]] 
            -= tmp;
                                c[OP(pre[u])] 
            += tmp;
                                u 
            = end[OP(pre[u])];
                            }
                            
            while (u != S);
                            a[S] 
            = INFINITE;
                        }
                    }
                    
            else
                    {
                        
            if ((--cnt[d[u]]) == 0)
                            
            break;
                        cur[u] 
            = begin[u], d[u] = N;
                        
            for (now = begin[u]; now; now = next[now])
                            
            if (c[now] && d[u] > d[end[now]] + 1)
                                d[u] 
            = d[end[now]] + 1, cur[u] = now;
                        cnt[d[u]] 
            ++;
                        
            if (u != S)
                            u 
            = end[OP(pre[u])];
                    }
                }
                
            return flow;
            }

            bool ans;
            void Solve()
            {
                BuildGraph();
                ans 
            = true;
                
            if (tot_flow[0!= tot_flow[1])
                    ans 
            = false;
                
            else if (sap() != tot_flow[0])
                    ans 
            = false;
            }

            void Print()
            {
                
            if (!ans)
                    puts(
            "Impossible!");
                
            else
                {
                    
            for (int i = 0; i < n; i ++)
                    {
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c"'.');
                            printf(
            "%c", c[edge_id[i][j][UP]] ? 'X' : '.');
                            printf(
            "%c"'.');
                        }
                        printf(
            "\n");
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c", c[edge_id[i][j][LEFT]] ? 'X' : '.');
                            printf(
            "%c", map[i][j] ? 'O' : '.');
                            printf(
            "%c", c[edge_id[i][j][RIGHT]] ? 'X' : '.');
                        }
                        printf(
            "\n");
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c"'.');
                            printf(
            "%c", c[edge_id[i][j][DOWN]] ? 'X' : '.');
                            printf(
            "%c"'.');
                        }
                        printf(
            "\n");
                    }
                }
            }

            int main()
            {
                freopen(
            "alliances.in""r", stdin);
                freopen(
            "alliances.out""w", stdout);
                Init();
                Solve();
                Print();
                
            return 0;
            }

            posted on 2010-07-15 11:19 TimTopCoder 閱讀(1861) 評論(1)  編輯 收藏 引用
            評論:
             
            Copyright © TimTopCoder Powered by: 博客園 模板提供:滬江博客
            久久婷婷色综合一区二区| 久久久久国产一区二区| 亚洲综合伊人久久综合| 亚洲国产另类久久久精品黑人 | 97久久精品人妻人人搡人人玩| 久久久久女人精品毛片| 国产精品狼人久久久久影院| 精品视频久久久久| 久久久亚洲裙底偷窥综合| 久久91精品久久91综合| 中文字幕精品久久| 久久精品国产免费| 日韩欧美亚洲综合久久| 久久久久国产精品麻豆AR影院| 久久91精品国产91| 国内精品久久久久久久影视麻豆| 日本五月天婷久久网站| 久久成人18免费网站| 精品久久人妻av中文字幕| 久久国产AVJUST麻豆| 99精品久久久久久久婷婷| 久久国产欧美日韩精品| 久久久久亚洲国产| 99久久精品国产一区二区| 久久久久亚洲av无码专区喷水| 蜜桃麻豆www久久国产精品| 日韩精品国产自在久久现线拍| 久久综合精品国产二区无码| 久久久久久久久66精品片| 久久免费香蕉视频| 久久久久免费视频| 国产精品美女久久久久AV福利| 久久91亚洲人成电影网站| 国产精品久久久久无码av| 国产精品无码久久综合| 久久精品人人做人人爽97 | 亚洲精品tv久久久久| 久久久久久久国产免费看| 欧美日韩精品久久久久| 精品久久久久久无码免费| 久久久99精品一区二区|