• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            Tim's Programming Space  
            Tim's Programming Space
            日歷
            <2010年7月>
            27282930123
            45678910
            11121314151617
            18192021222324
            25262728293031
            1234567
            統(tǒng)計(jì)
            • 隨筆 - 20
            • 文章 - 1
            • 評(píng)論 - 40
            • 引用 - 0

            導(dǎo)航

            常用鏈接

            留言簿(3)

            隨筆檔案

            文章檔案

            搜索

            •  

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

             

            The Alliances

            In a fantasy world, there is a large island of a rectangular shape. The sides of the island happen to be exactly R miles and C miles long, and the whole island is divided into a grid of R\times C areas. Some of the areas are uninhabited, and the rest are occupied by villages of fantasy beings: elves, humans, dwarves, and hobbits. Each area contains at most one village. Two villages are considered neighbours if their areas share a side.

            Recently, the villages became terrified of the Great Evil. In order to feel safer, each village has decided to form military alliances with some of its neighbours. An alliance always involves two neighbouring villages, and it is a mutual and symmetric agreement.

            Depending on the species living in the village, the inhabitants will not feel safe unless a specific configuration of alliances is formed:

            • The elves feel confident, and therefore need exactly one alliance.
            • Human villages require alliances with exactly two neighbours.
              Moreover, leaving two opposite sides of the village exposed is bad for tactical reasons. Therefore the two allied neighbours cannot be located on opposite sides of the village.
            • Dwarves require alliances with exactly three neighbours.
            • Hobbits are extremely scared, and therefore need to have alliances with all four of their neighbours.

            In other words, except for humans each village requires a particular number of alliances, but does not care which neighbours will be its allies. For humans there is an additional restriction: the allied neighbours must not be on opposite sides of the village.

            The conditions must be fulfilled irrespective of the position of the village on the map. For example, a dwarf village desires three alliances. If it is located on the coast, this means that it must have alliances with all three neighbours. If there is a dwarf village in a corner of the island, its inhabitants will never feel safe.

            Task specification

            For a given island description, your task is to decide whether it is possible to form alliances so that all inhabitants of the island will feel safe. In case of a positive answer, your task is also to suggest one viable configuration of alliances. In case of multiple solutions, choose an arbitrary one.

            Input specification

            The first line of the input contains two integers R and C specifying the size of the island. The following R lines encode a description of the island. Each line consists of C space-separated numbers between 0 and 4:

            • 0 means uninhabited area,
            • 1 means an elf village,
            • 2 means a human village,
            • 3 means a dwarf village.
            • 4 means a hobbit village,

            (Note that the number in the input always corresponds to the number of desired alliances for that village.)

            Constraints

            In all test cases assume that 1 \leq R,C \leq 70.

            In test cases worth a total of 55 points we have \min(R,C) \leq 10. Out of these, in test cases worth 15 points R\cdot C \leq 20.

            Another batch of test cases worth 10 points contains maps with only uninhabited areas and human villages. (This batch is not included in the test cases worth 55 points.)

            Output specification

            If there is no solution, output a single line with the string "Impossible!" (quotes for clarity). Otherwise, output one valid map of alliances in the following format.

            Each area should appear in the output as a matrix of 3 \times 3 characters. If the area is uninhabited, the corresponding section of the output will be filled with . (dot) symbols. If the area has a village there should be a a symbol O (uppercase letter O) in the middle representing the village itself, and there should be symbols X (uppercase letter X) representing a configuration of its allies. The rest of the 3\times 3 matrix should be filled with . (dot) symbols.

            For each village type, all possible layouts of alliances are shown in the image below.

            Examples

            input:

            3 4
            2 3 2 0
            3 4 3 0
            2 3 3 1

            output:

            ............
            .OXXOXXO....
            .X..X..X....
            .X..X..X....
            .OXXOXXO....
            .X..X..X....
            .X..X..X....
            .OXXOXXOXXO.
            ............

            input:

            1 2
            2 1

            output:

            Impossible!


            這是 CEOI2010 當(dāng)場(chǎng)唯一會(huì)做的。。。
            題目大意是:告訴一個(gè)70*70的格子里面每個(gè)點(diǎn)的度,每個(gè)格子只能往四周的四個(gè)格子連邊,邊是雙向的,對(duì)于度為2的點(diǎn)所連的兩條邊不能在一條直線上,求出一組方案。
            ============================
            如果沒(méi)有對(duì)度為2的點(diǎn)連邊的限制的話,就把格子黑白染色,建二分圖,相鄰的點(diǎn)連容量為1的邊,黑點(diǎn)連源,白點(diǎn)連匯,容量都為要求的度。流之即可。
            加上對(duì)度為2的點(diǎn)連邊的限制,這樣的方法出現(xiàn)的問(wèn)題在于沒(méi)法處理這個(gè)問(wèn)題了。
            但我們發(fā)現(xiàn),對(duì)于度為2的點(diǎn)的限制可以化為:橫向或者縱向都有且只有一條邊,于是把度為2的點(diǎn)拆成橫的和豎的兩個(gè)點(diǎn)就行了。

            /*
             * $File: alliances.cpp
             * $Date: Thu Jul 15 11:18:14 2010 +0800
             * $Prob: CEOI 2010 The Alliances
             * $Author: Tim
             * $Addr: 
            http://riesky.sk/ceoi2010/problem.php?contest=CEOI%202010%20Day%201&problem=alliances
             
            */

            #include 
            <cstdio>
            #include 
            <cstring>
            #include 
            <cstdlib>

            #define MAXL 71
            #define MAXN (MAXL * MAXL * 2 + 10)
            #define MAXM (MAXN * 4 + MAXN + MAXN) * 2


            #define INFINITE 0x3f3f3f3f
            #define MIN(a, b) ((a) < (b) ? (a) : (b))
            #define OP(x) ((((x) - 1) ^ 1) + 1)

            #define OP_DIR(x) ((x + 2) & 3)

            using namespace std;

            const int fx[] = {010-1};
            const int fy[] = {10-10};
            const int UP    = 3,
                      DOWN    
            = 1,
                      LEFT    
            = 2,
                      RIGHT 
            = 0;


            int map[MAXL + 1][MAXL + 1];
            int n, m;
            void Init()
            {
                scanf(
            "%d%d"&n, &m);
                
            for (int i = 0; i < n; i ++)
                    
            for (int j = 0; j < m; j ++)
                        scanf(
            "%d"&map[i][j]);
            }

            int N = 2, S = 0, T = 1;
            int id[MAXL + 1][MAXL + 1][2];
            int ID(int x, int y, int flag)
            {
                
            if (id[x][y][flag])
                    
            return id[x][y][flag];
                
            return id[x][y][flag] = N ++;
            }

            int edge_id[MAXL + 1][MAXL + 1][4];
            int Count = 0;
            int begin[MAXN + 1], end[MAXM + 1], next[MAXM + 1], c[MAXM + 1];
            void AddEdge(int a, int b, int f)
            {
                Count 
            ++;
                next[Count] 
            = begin[a];
                begin[a] 
            = Count;
                end[Count] 
            = b;
                c[Count] 
            = f;

                Count 
            ++;
                next[Count] 
            = begin[b];
                begin[b] 
            = Count;
                end[Count] 
            = a;
                c[Count] 
            = 0;
            }

            int tot_flow[2];
            void BuildGraph()
            {
                    
            for (int i = 0; i < n; i ++)
                    
            for (int j = 0; j < m; j ++)
                        
            if (map[i][j])
                        {
                            
            if ((i + j) & 1)
                            {
                                
            for (int k = 0; k < 4; k ++)
                                {
                                    
            int x = i + fx[k], y = j + fy[k];
                                    
            if (x >= 0 && x < n && y >= 0 && y < m && map[x][y])
                                    {
                                        AddEdge(ID(i, j, (map[i][j] 
            == 2 ? (k & 1) : 0)), 
                                                ID(x, y, (map[x][y] 
            == 2 ? (k & 1) : 0)),
                                                
            1);
                                        edge_id[i][j][k] 
            = edge_id[x][y][OP_DIR(k)] = Count;
                                    }
                                }
                                
            if (map[i][j] == 2)
                                {
                                    AddEdge(S, ID(i, j, 
            0), 1);
                                    AddEdge(S, ID(i, j, 
            1), 1);
                                }
                                
            else
                                    AddEdge(S, ID(i, j, 
            0), map[i][j]);
                            }
                            
            else
                            {
                                
            if (map[i][j] == 2)
                                {
                                    AddEdge(ID(i, j, 
            0), T, 1);
                                    AddEdge(ID(i, j, 
            1), T, 1);
                                }
                                
            else
                                    AddEdge(ID(i, j, 
            0), T, map[i][j]);
                            }
                            tot_flow[(i 
            + j) & 1+= map[i][j];
                        }
            }
            int cur[MAXN + 1], d[MAXN + 1], pre[MAXN + 1], a[MAXN + 1], cnt[MAXN + 1];
            int sap()
            {
                
            int flow = 0, now, tmp, u;
                a[u 
            = S] = INFINITE;
                cnt[
            0= N;
                memcpy(cur, begin, 
            sizeof(begin[0]) * N);
                
            while (d[S] < N)
                {
                    
            for (now = cur[u]; now; now = next[now])
                        
            if (c[now] && d[u] == d[end[now]] + 1)
                            
            break;
                    
            if (now)
                    {
                        tmp 
            = end[now];
                        pre[tmp] 
            = cur[u] = now;
                        a[tmp] 
            = MIN(a[u], c[now]);
                        
            if ((u = tmp) == T)
                        {
                            flow 
            += (tmp = a[T]);
                            
            do
                            {
                                c[pre[u]] 
            -= tmp;
                                c[OP(pre[u])] 
            += tmp;
                                u 
            = end[OP(pre[u])];
                            }
                            
            while (u != S);
                            a[S] 
            = INFINITE;
                        }
                    }
                    
            else
                    {
                        
            if ((--cnt[d[u]]) == 0)
                            
            break;
                        cur[u] 
            = begin[u], d[u] = N;
                        
            for (now = begin[u]; now; now = next[now])
                            
            if (c[now] && d[u] > d[end[now]] + 1)
                                d[u] 
            = d[end[now]] + 1, cur[u] = now;
                        cnt[d[u]] 
            ++;
                        
            if (u != S)
                            u 
            = end[OP(pre[u])];
                    }
                }
                
            return flow;
            }

            bool ans;
            void Solve()
            {
                BuildGraph();
                ans 
            = true;
                
            if (tot_flow[0!= tot_flow[1])
                    ans 
            = false;
                
            else if (sap() != tot_flow[0])
                    ans 
            = false;
            }

            void Print()
            {
                
            if (!ans)
                    puts(
            "Impossible!");
                
            else
                {
                    
            for (int i = 0; i < n; i ++)
                    {
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c"'.');
                            printf(
            "%c", c[edge_id[i][j][UP]] ? 'X' : '.');
                            printf(
            "%c"'.');
                        }
                        printf(
            "\n");
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c", c[edge_id[i][j][LEFT]] ? 'X' : '.');
                            printf(
            "%c", map[i][j] ? 'O' : '.');
                            printf(
            "%c", c[edge_id[i][j][RIGHT]] ? 'X' : '.');
                        }
                        printf(
            "\n");
                        
            for (int j = 0; j < m; j ++)
                        {
                            printf(
            "%c"'.');
                            printf(
            "%c", c[edge_id[i][j][DOWN]] ? 'X' : '.');
                            printf(
            "%c"'.');
                        }
                        printf(
            "\n");
                    }
                }
            }

            int main()
            {
                freopen(
            "alliances.in""r", stdin);
                freopen(
            "alliances.out""w", stdout);
                Init();
                Solve();
                Print();
                
            return 0;
            }

            posted on 2010-07-15 11:19 TimTopCoder 閱讀(1862) 評(píng)論(1)  編輯 收藏 引用
            評(píng)論:

            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問(wèn)   Chat2DB   管理


             
            Copyright © TimTopCoder Powered by: 博客園 模板提供:滬江博客
            国产美女久久久| 一本色道久久88加勒比—综合| 最新久久免费视频| 久久精品国产亚洲AV香蕉| 久久99精品久久久久久动态图| 精品国产91久久久久久久| 久久综合色区| 国内精品久久久久伊人av | 亚洲精品乱码久久久久久中文字幕 | 国产免费久久久久久无码| 久久人人爽人人爽人人爽 | 国产69精品久久久久观看软件| 久久99亚洲网美利坚合众国| 久久久久亚洲AV无码专区网站| 无码AV波多野结衣久久| 国产精品久久久久蜜芽| 国产精品美女久久久久av爽| 韩国免费A级毛片久久| 国内精品伊人久久久久777| 久久国产福利免费| 久久se精品一区二区| 久久久无码精品亚洲日韩按摩| 欧美大战日韩91综合一区婷婷久久青草| 久久精品国产久精国产思思| 亚洲av伊人久久综合密臀性色| 人妻无码久久精品| 日韩中文久久| 久久精品国产久精国产果冻传媒| 亚洲日韩欧美一区久久久久我 | 久久成人影院精品777| 久久国产精品99精品国产| 无码超乳爆乳中文字幕久久| 中文国产成人精品久久不卡| 一本一本久久A久久综合精品 | 久久99国内精品自在现线| 久久久噜噜噜久久熟女AA片| 久久亚洲精精品中文字幕| 国产韩国精品一区二区三区久久| 久久综合久久综合久久| 久久精品国产一区二区三区不卡| 久久精品国产亚洲7777|