• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            風雨

            驀然回首 卻在燈火闌珊處
            posts - 3, comments - 2, trackbacks - 0, articles - 0
              C++博客 :: 首頁 :: 新隨筆 :: 聯系 :: 聚合  :: 管理

            [轉載] Computing n choose k mod p

            Posted on 2010-05-04 10:07 zgm 閱讀(549) 評論(0)  編輯 收藏 引用

            Computing n choose k mod p

            Postby joshi13 » Tue Apr 14, 2009 4:49 am

            Hi all.

            How can we apply the modular multiplicative inverse when calculating

            (n choose k) mod p, where 'p' is a prime number.

            If you could suggest some related problems, it would be very helpful.

            Thanks in advance.


            Re: Computing n choose k mod p

            Postby mf » Tue Apr 14, 2009 10:56 am

            You could use .


            Re: Computing n choose k mod p

            Postby maxdiver » Tue Apr 14, 2009 12:03 pm

            There is another, more "mechanical", but more general, approach. It can be applied to any formula containing factorials over some modulo.

            C_n^k = n! / (k! (n-k)!)
            Let's learn how to compute n! mod p, but factorial without factors p and so on:
            n!* mod p = 1 * 2 * ... * (p-1) * _1_ * (p+1) * (p+2) * ... * (2p-1) * _2_ * (2p+1) * (2p+2) * ... * n.
            We took the usual factorial, but excluded all factors of p (1 instead of p, 2 instead of 2p, and so on).
            I name this 'strange factorial'.

            If n is not very large, we can calculate this simply, then GOTO END_SCARY_MATHS :)
            If p is not large, then GOTO BEGIN_SCARY_MATHS:
            Else - skip the rest of the post :)

            BEGIN_SCARY_MATHS:
            After taking each factor mod p, we get:
            n!* mod p = 1 * 2 * ... * (p-1) * 1 * 2 * ... * (p-1) * 2 * 1 * 2 * ... * n.
            So 'strange factorial' is really several blocks of construction:
            1 * 2 * 3 * ... * (p-1) * i
            where i is a 1-indexed index of block taken again without factors p ('strange index' :) ).
            The last block could be not full. More precisely, there will be floor(n/p) full blocks and some tail (its result we can compute easily, in O(P)).
            The result in each block is multiplication 1 * 2 * ... * (p-1), which is common to all blocks, and multiplication of all 'strange indices' i from 1 to floor(n/p).
            But multiplication of all 'strange indices' is really a 'strange factorial' again, so we can compute it recursively. Note, that in recursive calls n reduces exponentially, so this is rather fast algorithm.

            So... After so much brainfucking maths I must give a code :)
            Code: Select all
            int factmod (int n, int p) {
               long long res = 1;
               while (n > 1) {
                  long long cur = 1;
                  for (int i=2; i<p; ++i)
                     cur = (cur * i) % p;
                  res = (res * powmod (cur, n/p, p)) % p;
                  for (int i=2; i<=n%p; ++i)
                     res = (res * i) % p;
                  n /= p;
               }
               return int (res % p);
            }

            Asymptotic... There are log_p n iterations of while, inside it there O(p) multiplications, and calculation of power, that can be done in O(log n). So asymptotic is O ((log_p n) (p + log n)).
            Unfortunately I didn't check the code on any online judge, but the idea (which was explained by Andrew Stankevich) is surely right.
            END_SCARY_MATHS:

            So, we can now compute this 'strange factorial' modulo p. Because p is prime, and we've excluded all multiples of p, then the result would be different from zero. This means we can compute inverse for them, and compute C_n^k = n!* / (k!* (n-k)!*) (mod p).
            But, of course, before all this, we should check, if p was in the same power in the nominator and denominator of the fraction. If it was indeed in the same power, then we can divide by it, and we get exactly these 'strange factorials'. If the power of p in nominator was greater, then the result will obviously be 0. The last case, when power in denominator is greater than in nominator, is obviously incorrect (the fraction won't be integer).

            P.S. How to compute power of prime p in n! ? Easy formula: n/p + n/(p^2) + n/(p^3) + ...


            (轉載:http://acm.uva.es/board/viewtopic.php?f=22&t=42690&sid=25bd8f7f17abec626f2ee065fec3703b
            香港aa三级久久三级| 亚洲精品乱码久久久久久中文字幕| 久久久久久久97| 国产精品免费久久久久影院| 亚洲国产成人久久笫一页| 亚洲狠狠婷婷综合久久蜜芽| 久久精品国产亚洲欧美| 99久久这里只精品国产免费| 久久精品国产亚洲欧美| 无码任你躁久久久久久老妇App| 久久99国产精品99久久| 欧美久久久久久| 国内精品伊人久久久久影院对白 | 久久天天躁狠狠躁夜夜躁2O2O| 久久国产成人精品麻豆| 国产亚洲色婷婷久久99精品91 | 亚洲中文久久精品无码| 日本一区精品久久久久影院| 久久午夜综合久久| 狠色狠色狠狠色综合久久| 久久亚洲AV无码精品色午夜| 国产99久久久国产精品~~牛 | 99精品国产99久久久久久97 | 99久久er这里只有精品18| 亚洲国产成人精品91久久久| 国产∨亚洲V天堂无码久久久| 伊人 久久 精品| 久久久中文字幕日本| 青青草国产精品久久久久| 久久久国产精品网站| 久久精品无码一区二区无码| 久久人妻少妇嫩草AV无码专区| 一本久久精品一区二区| 亚洲欧洲久久久精品| 7777精品伊人久久久大香线蕉| 久久精品国产第一区二区| 亚洲一区二区三区日本久久九| aaa级精品久久久国产片| 久久久青草久久久青草| 91久久精品视频| 精品熟女少妇aⅴ免费久久|