• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            風(fēng)雨

            驀然回首 卻在燈火闌珊處
            posts - 3, comments - 2, trackbacks - 0, articles - 0
              C++博客 :: 首頁(yè) :: 新隨筆 :: 聯(lián)系 :: 聚合  :: 管理

            Computing n choose k mod p

            Postby joshi13 » Tue Apr 14, 2009 4:49 am

            Hi all.

            How can we apply the modular multiplicative inverse when calculating

            (n choose k) mod p, where 'p' is a prime number.

            If you could suggest some related problems, it would be very helpful.

            Thanks in advance.


            Re: Computing n choose k mod p

            Postby mf » Tue Apr 14, 2009 10:56 am

            You could use .


            Re: Computing n choose k mod p

            Postby maxdiver » Tue Apr 14, 2009 12:03 pm

            There is another, more "mechanical", but more general, approach. It can be applied to any formula containing factorials over some modulo.

            C_n^k = n! / (k! (n-k)!)
            Let's learn how to compute n! mod p, but factorial without factors p and so on:
            n!* mod p = 1 * 2 * ... * (p-1) * _1_ * (p+1) * (p+2) * ... * (2p-1) * _2_ * (2p+1) * (2p+2) * ... * n.
            We took the usual factorial, but excluded all factors of p (1 instead of p, 2 instead of 2p, and so on).
            I name this 'strange factorial'.

            If n is not very large, we can calculate this simply, then GOTO END_SCARY_MATHS :)
            If p is not large, then GOTO BEGIN_SCARY_MATHS:
            Else - skip the rest of the post :)

            BEGIN_SCARY_MATHS:
            After taking each factor mod p, we get:
            n!* mod p = 1 * 2 * ... * (p-1) * 1 * 2 * ... * (p-1) * 2 * 1 * 2 * ... * n.
            So 'strange factorial' is really several blocks of construction:
            1 * 2 * 3 * ... * (p-1) * i
            where i is a 1-indexed index of block taken again without factors p ('strange index' :) ).
            The last block could be not full. More precisely, there will be floor(n/p) full blocks and some tail (its result we can compute easily, in O(P)).
            The result in each block is multiplication 1 * 2 * ... * (p-1), which is common to all blocks, and multiplication of all 'strange indices' i from 1 to floor(n/p).
            But multiplication of all 'strange indices' is really a 'strange factorial' again, so we can compute it recursively. Note, that in recursive calls n reduces exponentially, so this is rather fast algorithm.

            So... After so much brainfucking maths I must give a code :)
            Code: Select all
            int factmod (int n, int p) {
               long long res = 1;
               while (n > 1) {
                  long long cur = 1;
                  for (int i=2; i<p; ++i)
                     cur = (cur * i) % p;
                  res = (res * powmod (cur, n/p, p)) % p;
                  for (int i=2; i<=n%p; ++i)
                     res = (res * i) % p;
                  n /= p;
               }
               return int (res % p);
            }

            Asymptotic... There are log_p n iterations of while, inside it there O(p) multiplications, and calculation of power, that can be done in O(log n). So asymptotic is O ((log_p n) (p + log n)).
            Unfortunately I didn't check the code on any online judge, but the idea (which was explained by Andrew Stankevich) is surely right.
            END_SCARY_MATHS:

            So, we can now compute this 'strange factorial' modulo p. Because p is prime, and we've excluded all multiples of p, then the result would be different from zero. This means we can compute inverse for them, and compute C_n^k = n!* / (k!* (n-k)!*) (mod p).
            But, of course, before all this, we should check, if p was in the same power in the nominator and denominator of the fraction. If it was indeed in the same power, then we can divide by it, and we get exactly these 'strange factorials'. If the power of p in nominator was greater, then the result will obviously be 0. The last case, when power in denominator is greater than in nominator, is obviously incorrect (the fraction won't be integer).

            P.S. How to compute power of prime p in n! ? Easy formula: n/p + n/(p^2) + n/(p^3) + ...


            (轉(zhuǎn)載:http://acm.uva.es/board/viewtopic.php?f=22&t=42690&sid=25bd8f7f17abec626f2ee065fec3703b

            只有注冊(cè)用戶(hù)登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問(wèn)   Chat2DB   管理


            日韩欧美亚洲综合久久影院Ds| 久久久久一区二区三区| 久久久久99这里有精品10 | 狠狠88综合久久久久综合网| 日韩电影久久久被窝网| 亚洲欧美伊人久久综合一区二区 | 91久久精品电影| 久久精品国产第一区二区三区| 性做久久久久久久久久久| 久久综合给合久久国产免费| 亚洲综合伊人久久大杳蕉| 久久中文字幕精品| 久久精品国产精品亚洲精品| 久久精品中文无码资源站 | 国产成人无码精品久久久性色| 久久亚洲国产精品一区二区| 一本色道久久HEZYO无码| 久久一本综合| 久久人妻少妇嫩草AV无码专区 | 久久久久久综合一区中文字幕 | 欧美亚洲另类久久综合婷婷| 国产精品久久久久影院色| 久久久久中文字幕| 国产美女久久精品香蕉69| 欧洲人妻丰满av无码久久不卡| 久久这里只有精品视频99| 99国内精品久久久久久久| 狠狠色丁香久久综合五月| 久久精品亚洲日本波多野结衣| 亚洲中文字幕久久精品无码喷水 | 久久精品国产99国产精品澳门| 久久精品国产亚洲AV高清热| 久久久久99精品成人片直播| 亚洲国产精品久久久天堂| 国产成人久久精品一区二区三区 | 久久免费精品视频| 精品国产乱码久久久久久浪潮| 热久久国产欧美一区二区精品| 看全色黄大色大片免费久久久| 热久久国产欧美一区二区精品 | 久久久精品免费国产四虎|