• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            牽著老婆滿街逛

            嚴以律己,寬以待人. 三思而后行.
            GMail/GTalk: yanglinbo#google.com;
            MSN/Email: tx7do#yahoo.com.cn;
            QQ: 3 0 3 3 9 6 9 2 0 .

            GNU CPU-Affinity

            轉載自:http://www.gnu.org/s/libc/manual/html_node/CPU-Affinity.html

            22.3.5 Limiting execution to certain CPUs

            On a multi-processor system the operating system usually distributes the different processes which are runnable on all available CPUs in a way which allows the system to work most efficiently. Which processes and threads run can be to some extend be control with the scheduling functionality described in the last sections. But which CPU finally executes which process or thread is not covered.

            There are a number of reasons why a program might want to have control over this aspect of the system as well:

            • One thread or process is responsible for absolutely critical work which under no circumstances must be interrupted or hindered from making process by other process or threads using CPU resources. In this case the special process would be confined to a CPU which no other process or thread is allowed to use.
            • The access to certain resources (RAM, I/O ports) has different costs from different CPUs. This is the case in NUMA (Non-Uniform Memory Architecture) machines. Preferably memory should be accessed locally but this requirement is usually not visible to the scheduler. Therefore forcing a process or thread to the CPUs which have local access to the mostly used memory helps to significantly boost the performance.
            • In controlled runtimes resource allocation and book-keeping work (for instance garbage collection) is performance local to processors. This can help to reduce locking costs if the resources do not have to be protected from concurrent accesses from different processors.

            The POSIX standard up to this date is of not much help to solve this problem. The Linux kernel provides a set of interfaces to allow specifying affinity sets for a process. The scheduler will schedule the thread or process on CPUs specified by the affinity masks. The interfaces which the GNU C library define follow to some extend the Linux kernel interface.

            — Data Type: cpu_set_t

            This data set is a bitset where each bit represents a CPU. How the system's CPUs are mapped to bits in the bitset is system dependent. The data type has a fixed size; in the unlikely case that the number of bits are not sufficient to describe the CPUs of the system a different interface has to be used.

            This type is a GNU extension and is defined in sched.h.

            To manipulate the bitset, to set and reset bits, a number of macros is defined. Some of the macros take a CPU number as a parameter. Here it is important to never exceed the size of the bitset. The following macro specifies the number of bits in the cpu_set_t bitset.

            — Macro: int CPU_SETSIZE

            The value of this macro is the maximum number of CPUs which can be handled with a cpu_set_t object.

            The type cpu_set_t should be considered opaque; all manipulation should happen via the next four macros.

            — Macro: void CPU_ZERO (cpu_set_t *set)

            This macro initializes the CPU set set to be the empty set.

            This macro is a GNU extension and is defined in sched.h.

            — Macro: void CPU_SET (int cpu, cpu_set_t *set)

            This macro adds cpu to the CPU set set.

            The cpu parameter must not have side effects since it is evaluated more than once.

            This macro is a GNU extension and is defined in sched.h.

            — Macro: void CPU_CLR (int cpu, cpu_set_t *set)

            This macro removes cpu from the CPU set set.

            The cpu parameter must not have side effects since it is evaluated more than once.

            This macro is a GNU extension and is defined in sched.h.

            — Macro: int CPU_ISSET (int cpu, const cpu_set_t *set)

            This macro returns a nonzero value (true) if cpu is a member of the CPU set set, and zero (false) otherwise.

            The cpu parameter must not have side effects since it is evaluated more than once.

            This macro is a GNU extension and is defined in sched.h.

            CPU bitsets can be constructed from scratch or the currently installed affinity mask can be retrieved from the system.

            — Function: int sched_getaffinity (pid_t pid, size_t cpusetsize, cpu_set_t *cpuset)

            This functions stores the CPU affinity mask for the process or thread with the ID pid in the cpusetsize bytes long bitmap pointed to by cpuset. If successful, the function always initializes all bits in the cpu_set_t object and returns zero.

            If pid does not correspond to a process or thread on the system the or the function fails for some other reason, it returns -1 and errno is set to represent the error condition.

            ESRCH
            No process or thread with the given ID found. 
            EFAULT
            The pointer cpuset is does not point to a valid object.

            This function is a GNU extension and is declared in sched.h.

            Note that it is not portably possible to use this information to retrieve the information for different POSIX threads. A separate interface must be provided for that.

            — Function: int sched_setaffinity (pid_t pid, size_t cpusetsize, const cpu_set_t *cpuset)

            This function installs the cpusetsize bytes long affinity mask pointed to by cpuset for the process or thread with the ID pid. If successful the function returns zero and the scheduler will in future take the affinity information into account.

            If the function fails it will return -1 and errno is set to the error code:

            ESRCH
            No process or thread with the given ID found. 
            EFAULT
            The pointer cpuset is does not point to a valid object. 
            EINVAL
            The bitset is not valid. This might mean that the affinity set might not leave a processor for the process or thread to run on.

            This function is a GNU extension and is declared in sched.h.

            posted on 2010-10-31 15:55 楊粼波 閱讀(505) 評論(0)  編輯 收藏 引用

            伊人久久大香线蕉综合热线| 狠狠色丁香婷婷综合久久来| 亚洲日本va午夜中文字幕久久 | 国产成人综合久久久久久| 精品久久久久久久中文字幕| 亚洲国产天堂久久综合| 狠狠色丁香久久综合五月| 日韩美女18网站久久精品| 久久精品无码专区免费东京热 | 97久久精品午夜一区二区| 午夜精品久久久久久| 久久久久久久99精品免费观看| 久久久久亚洲AV成人网| 久久精品无码午夜福利理论片| 亚洲а∨天堂久久精品9966| 日本免费一区二区久久人人澡 | 国产成人精品久久一区二区三区| 亚州日韩精品专区久久久| 久久亚洲国产中v天仙www| 一本色道久久88精品综合| 久久这里只有精品视频99| 亚洲伊人久久大香线蕉苏妲己 | 久久国产精品一区| 伊人色综合久久天天| 国产精品久久久久jk制服| 中文字幕久久精品无码| 午夜精品久久久久| 久久天天躁狠狠躁夜夜2020| 久久国产视频99电影| 国产精品热久久毛片| 香港aa三级久久三级| 日韩一区二区久久久久久| 人人狠狠综合久久亚洲婷婷| 久久99国产亚洲高清观看首页| 久久久久99精品成人片直播| 久久狠狠高潮亚洲精品| 狠狠88综合久久久久综合网| 国产99久久精品一区二区| 久久久国产精品网站| 久久99精品国产麻豆宅宅 | 久久精品国产色蜜蜜麻豆|