• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            牽著老婆滿街逛

            嚴以律己,寬以待人. 三思而后行.
            GMail/GTalk: yanglinbo#google.com;
            MSN/Email: tx7do#yahoo.com.cn;
            QQ: 3 0 3 3 9 6 9 2 0 .

            計算三角形網格的tangent space

            轉載自:http://absolute.javaeye.com/blog/213872

                 又一篇學習筆記,參考Mathematics for 3D Game Programming and Computer Graphics和ShaderX4上一篇關于tangent space計算的文章寫的東西。對于計算時需要分裂頂點的內容看的還不是太清楚-_-b。另外,目前的算法還不能完美處理鏡像或者在紋理不連續處可能出現的問題,就算在Farcry中,很多問題也是通過美工來“隱藏”的,再一次應證了之前對美工重要性的結論^^。

             

             

             

             

             算法:

                  Tangent spaceBump Map中有著重要作用,通常需要把燈光轉換到tangent space進行計算。對由參數方程計算出的規則曲面(比如,球體,圓環)來說,很容易通過方程計算出tangent space,但對任意的三角形網格來說,則沒有那么簡單。

            Tangent space是一個三維空間。對3D空間中的一個頂點來說,切空間的三條座標軸分別對應該點的法線N,切線T,和副法線(binormalB,顯然,對不同的頂點來說,切空間是不同的。那么在已知三角形三個頂點及其紋理坐標的時候,如何計算出NTB呢?

            目前已知的數據有三角形的三個頂點在世界坐標中的位置: P0, P1,P2, 以及相應的紋理坐標在紋理空間中的位置C0 (U0,V0)C1C2,則有:

             

            P10 = P1 – P0

            P­20 = P2 - P1 ,

            C10 = C1 – C0 = (U1-U0, V1-V0) = ( U10 ,V10)

            C20 = C2 – C0.= (U2-U0, V2-V0) = ( U20 ,V20)

             

            注意,P10在世界坐標中的方向和C10在紋理空間中的方向是一致的(這一點確實比較抽象,偶畫圖研究了好久才弄明白-_-),同樣,20C20也是如此,發現這一點很重要,可以說是整個計算的基石。進一步來說,TB分別和紋理坐標軸UV是平行的。因此我們有:

             

            P10 = U10T + V10B

            P­20 = U20T + V20B

            把矢量展開得到:

             

            兩邊乘以[C10 C20]的逆矩陣,最后得到

             

            法線N = T x B

            這樣我們就得到了坐標從切空間轉變到世界坐標下的變換矩陣M = [ T B N ],當然,更加常用的是M的逆矩陣。注意,這里計算得出的只是面法線,如果需要計算每個頂點的法線,則應該對共享該頂點的多個面的法線取均值,求出結果。

             

            實現:

             ogre calculate tangent:

            Vector3 Math::calculateTangentSpaceVector(
             
            const Vector3& position1, const Vector3& position2, const Vector3& position3,
             Real u1, Real v1, Real u2, Real v2, Real u3, Real v3)
             
            {
               
            //side0 is the vector along one side of the triangle of vertices passed in, 
               
            //and side1 is the vector along another side. Taking the cross product of these returns the normal.
               Vector3 side0 = position1 - position2;
               Vector3 side1 
            = position3 - position1;
               
            //Calculate face normal
               Vector3 normal = side1.crossProduct(side0);
               normal.normalise();
               
            //Now we use a formula to calculate the tangent. 
               Real deltaV0 = v1 - v2;
               Real deltaV1 
            = v3 - v1;
               Vector3 tangent 
            = deltaV1 * side0 - deltaV0 * side1;
               tangent.normalise();
               
            //Calculate binormal
               Real deltaU0 = u1 - u2;
               Real deltaU1 
            = u3 - u1;
               Vector3 binormal 
            = deltaU1 * side0 - deltaU0 * side1;
               binormal.normalise();
               
            //Now, we take the cross product of the tangents to get a vector which 
               
            //should point in the same direction as our normal calculated above. 
               
            //If it points in the opposite direction (the dot product between the normals is less than zero), 
               
            //then we need to reverse the s and t tangents. 
               
            //This is because the triangle has been mirrored when going from tangent space to object space.
               
            //reverse tangents if necessary
               Vector3 tangentCross = tangent.crossProduct(binormal);
               
            if (tangentCross.dotProduct(normal) < 0.0f)
               
            {
                 tangent 
            = -tangent;
                 binormal 
            = -binormal;
               }


             
            return tangent;

             }

            posted on 2008-12-09 04:37 楊粼波 閱讀(778) 評論(0)  編輯 收藏 引用

            99久久婷婷国产一区二区| 国产精品热久久无码av| 久久精品国产亚洲AV无码麻豆 | 欧美激情精品久久久久久| 麻豆亚洲AV永久无码精品久久| 久久久一本精品99久久精品88| 久久精品女人天堂AV麻| 亚洲香蕉网久久综合影视 | 久久亚洲国产成人影院网站| 2020久久精品亚洲热综合一本| 久久综合丁香激情久久| 狠狠色噜噜色狠狠狠综合久久| 国产精品99久久精品爆乳| 精品熟女少妇AV免费久久| 久久国产香蕉视频| 精品久久久久久中文字幕| 国产成人精品免费久久久久| 理论片午午伦夜理片久久 | 要久久爱在线免费观看| 天天综合久久久网| 久久午夜无码鲁丝片| 99精品国产免费久久久久久下载| 伊人久久免费视频| 99久久久精品| 久久精品中文无码资源站| 精品无码久久久久国产动漫3d| 久久伊人亚洲AV无码网站| 久久97久久97精品免视看秋霞| 久久精品国产亚洲欧美| 国内精品伊人久久久久av一坑 | 久久婷婷国产剧情内射白浆| 国内精品久久久久久久影视麻豆| www.久久热| av无码久久久久久不卡网站| 久久久噜噜噜www成人网| 日韩精品久久久久久久电影蜜臀 | 青草影院天堂男人久久| 久久精品九九亚洲精品天堂 | 中文字幕无码精品亚洲资源网久久| 亚洲国产成人久久综合碰| 国产香蕉久久精品综合网|