• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            牽著老婆滿街逛

            嚴以律己,寬以待人. 三思而后行.
            GMail/GTalk: yanglinbo#google.com;
            MSN/Email: tx7do#yahoo.com.cn;
            QQ: 3 0 3 3 9 6 9 2 0 .

            Collision detection with Recursive Dimensional Clustering

            http://lab.polygonal.de/articles/recursive-dimensional-clustering/

            Collision detection with Recursive Dimensional Clustering

            Brute force comparison

            Collision detection can be done in many ways. The most straightforward and simplest way is to just test every object against all other objects. Because every object has to test only for others after it in the list of objects, and testing an object with itself is useless, we arrive at the well known brute force comparison algorithm:

            for (i = 0; i <  n; i++)
            {
                a
            = obj[i];

               
            for (j = i + 1; j <  n; j++)
               
            {
                    b
            = obj[j];
                    collide
            (a, b)
               
            }
            }

            This double nested loop has a time complexity (n is the number of objects to check) of:
            brute force time complexity
            It can be immediately seen that this suffers from a big problem: exponential growth. An excellent article by Dave Roberts describes this problem in more detail and also covers several alternative approaches to collision detection.

            Space partitioning

            The algorithm represented here uses space partitioning, which means it subdivides the screen into smaller regions. Each region then obviously contains a fewer number of objects. The collision checks for all the entities in the region (space garbage, alien spaceships, orks, whatever) are then performed by the brute force comparison - which is very efficient for a small number of objects.

            Two other common spatial partitioning schemes are Binary Space Partitioning (BSP) and Quadtree/Octree Partitioning. All have in common that they recursively subdivide the space into smaller pieces. RDC however, does not construct a tree based structure and must be recomputed every frame. BSP and Quad trees on the other side are best used when precomputed since they are expensive to modify.

            So first, we limit the number of collision checks by using spatial partitioning and second, we wrap each object in a bounding shape (e.g. bounding sphere) to quickly eliminate objects that aren’t colliding.

            RDC has an average time complexity of:
            RDC time complexity
            While the number of tests using brute-force alone explodes, RDC method increases approximately linearly.

            The algorithm

            RDC was described by Steve Rabin, in the book Game Programming Gems II: “Recursive Dimensional Clustering: A Fast Algorithm for Collision Detection”. Without going into the depth as much, I’ll try to recap the basic principles, followed by an working implementation which you can download and try for yourself.

            The steps involved in the RDC algorithm are as follows:

            Step1: Iterate trough all objects and store the intervals for a given axis in a list data structure. e.g. for the x-axis we store the minimum (open) and maximum (close) x position of the object boundary. An easy way to do this is using displayObjectInstance.getBounds(). The same is done for the y-axis (and of course for the z-axis, if you are in 3D space). Each boundary has to also remember what entity it belongs to and if its a ‘open’ or ‘close’ type:

            class Boundary
            {
               
            public var type:String;
               
            public var position:Number;
               
            public var object:Object;
            }

            Step2: Sort the collected list of boundary objects in ascending order from lowest to highest position:

            var boundaries:Array = getIntervals(objects, axis)
            boundaries
            .sortOn("position", Array.NUMERIC);

            Step3: Iterate trough the sorted boundary list and store objects with overlapping intervals into groups:

            var group:Array = [];
            var groupCollection:Array;
            var count:int = 0;

            for (var i:int = 0; i <  boundaries.length; i++)
            {
               
            var object:Boundary = boundaries[i];

               
            if (object.type == "open")
               
            {
                    count
            ++;
                   
            group.push(object);
               
            }
               
            else
               
            {
                    count
            --;
                   
            if (count == 0)
                   
            {
                        groupCollection
            .push(group);
                       
            group = [];
                   
            }
               
            }
            }

            If you are dealing just with one dimension (which would be a strange game…) you would be done.
            For this to work in higher dimensions, you have to also subdivide the group along the other axis (y in 2d, y and z in 3d), and then re-analyze those groups along every other axis as well. For the 2d case, this means:

            1. subdivide along the x-axis
            2. subdivide the result along the y-axis.
            3. re-subdivide the result along the x-axis.

            Those steps are repeated until the recursion depth is reached. This is best shown with some pictures:

            x-axis no intersection
            All objects are happily separated, no groups are found.

            x-axis intersection
            The open/close boundaries of object a and b overlap -
            thus both are put into a group.

            y-axis no intersection
            Even though the intervals of object a and b overlap along the
            x-axis, they are still separated along the y-axis.

            y-axis reanalyze x-axis
            Subdividing along the x-axis results in one group [A, B, C].
            Second pass along y-axis splits the group into [B], [A, C].
            Subdividing along the x-axis again splits [A,C], so finally we
            get the correct result: [A], [B], [C].

            Interactive demo

            This should give you a better idea what RDC does. The value in the input field defines how many objects a group must have to stop recursion. By lowering the number, you actually increase the recursion depth (slower computation). So you tell the algorithm: “try to make smaller groups by subdividing further!”. If you set this value to 1, only one object is allowed per group. If you set the value too high (faster computation) you get bigger groups. This can also be seen as a blending factor between brute force comparison and RDC. Usually you have to find a value in between, so that perhaps each group contains 5-10 object to make this algorithm efficient.

            The ’s’ key toggles snap on/off. This is to show a potential problem that arises when the boundaries of two object share the same position. The sorting algorithm then arbitrary puts both object in a group (e.g. if the open boundary of object is stored before the close boundary of object b in the list), although they aren’t colliding, but just touching.
            You can resolve the issue in the sorting function, but as we want the algorithm to be as fast as possible, this is not a good idea. Instead, it’s best to use a tiny threshold value, which is accumulated to the interval. If the threshold value is positive, the boundaries are ‘puffed’ in, and object touching each other are not counted as colliding. If the value is negative, touching objects are grouped together and checked for collision later.

            ‘+/-’ keys simple increase/decrease the number of objects, and ‘d’ key toggles drawing of the boundaries, which gets very messy on large number of objects. Green rectangles denote the final computed groups, whereas gray groups are temporary groups formed by the recursive nature of the algorithm and are further subdivided.

            Drag the circles around, begin with a small number of object (3-4) and watch what the algo does.

            Full screen demo: interactive, animated (Flash Player 9)

            pro’s

            - recursive dimensional clustering is most efficient if the objects are distributed evenly across the screen and not in collision.

            - it is great for static objects since you can precompute the groups and use them as bounding boxes for dynamic objects.

            con’s

            - the worst case is when all objects are in contact with each other and the recursion depth is very high - the algorithm cannot isolate groups and is just wasting valuable processing time.

            - because of the recursive nature the algorithm is easy to grasp, but tricky to implement.

            the AVM2 is very fast, so unless you use expensive collision tests or have a large number of objects, a simple brute force comparison with a bounding sphere distance check is still faster than RDC.

            Download, implementation and usage

            Download the source code here. Please note that it is coded for clarity, not speed.
            Usage is very simple. You create an instance of the RDC class and pass a reference to a collision function to the constructor. The function is called with both objects as arguments if a collision is detected. A more elegant solution would use event handlers.

            function collide(a:*, b:*)
            {
                 
            // do something meaningful
            }

            var rdc:RDC = new RDC(collide);

            gameLoop
            ()
            {
               
            // start with x-axis (0), followed by y-axis (1)
                rdc
            .recursiveClustering([object0, object1, ...], 0, 1);
            }

            Have fun!
            Mike

            posted on 2007-12-28 16:57 楊粼波 閱讀(407) 評論(0)  編輯 收藏 引用

            亚洲欧美一区二区三区久久| 久久综合九色综合欧美狠狠| 手机看片久久高清国产日韩| 亚洲午夜久久久久久噜噜噜| 久久99精品久久久久久久久久| 亚洲成人精品久久| 久久久亚洲AV波多野结衣| 91精品国产高清久久久久久io| 国产精品久久久99| 99久久99久久精品国产片果冻| 日本一区精品久久久久影院| 久久久久亚洲AV片无码下载蜜桃| 国产精品久久久久久影院| 久久综合鬼色88久久精品综合自在自线噜噜 | 久久久无码精品午夜| 久久99久国产麻精品66| 成人精品一区二区久久| 综合久久国产九一剧情麻豆| 久久精品这里只有精99品| 99久久久精品免费观看国产| 少妇熟女久久综合网色欲| 久久久久国产视频电影| 精品免费久久久久久久| 一本色道久久综合狠狠躁| 午夜视频久久久久一区| 国产成人精品久久| 国产成人无码久久久精品一| 亚洲精品国产美女久久久| 久久婷婷五月综合国产尤物app| 麻豆精品久久久一区二区| 97久久超碰国产精品旧版| 蜜臀av性久久久久蜜臀aⅴ麻豆| 久久久无码精品亚洲日韩京东传媒| 三级韩国一区久久二区综合 | 国产精品亚洲综合久久| 国产精品永久久久久久久久久| 色综合久久综精品| 狠狠久久综合| 青青热久久国产久精品 | 亚洲国产成人久久综合碰碰动漫3d| 国产精品久久波多野结衣|