• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj 2524 Ubiquitous Religions 【并查集】

            Ubiquitous Religions
            Time Limit: 5000MS Memory Limit: 65536K
            Total Submissions: 12445 Accepted: 5900

            Description

            There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

            You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

            Input

            The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

            Output

            For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

            Sample Input

            10 9
            1 2
            1 3
            1 4
            1 5
            1 6
            1 7
            1 8
            1 9
            1 10
            10 4
            2 3
            4 5
            4 8
            5 8
            0 0
            

            Sample Output

            Case 1: 1
            Case 2: 7
            第一個并查集程序,最小生成樹不算。
             n個點,給你m條邊,求最大能有多少個連通分量。
            #include<iostream>
            using namespace std;
            const int MAX=50001;
            int fa[MAX];

            int find(int x)
            {
                
            return fa[x]==x?x:find(fa[x]);
            }

            void Union(int x, int y)
            {
                 fa[find(x)]
            =find(y);
            }
            int main()
            {
                
            int n,m;
                
            for(int tt=1; ; tt++)
                { 
                          cin
            >>n>>m;
                         
            if( n==0&&m==0)break;
                         
                         
            for(int i=1; i<=n; i++)
                                 fa[i]
            =i; 
                                 
                         
            int max=n;              
                         
            for(int i=1,s,t; i<=m; i++)
                                 {
                                     cin
            >>s>>t;
                                     
            if(find(s)!=find(t))max=max-1;
                                     Union(s,t);              
                                 }
                                 
                         cout
            <<"Case "<<tt<<':'<<' '<<max<<endl;
                         
                }
                
                system(
            "pause");    
                
            return 0;
            }


            posted on 2010-08-26 19:20 田兵 閱讀(319) 評論(0)  編輯 收藏 引用 所屬分類: 算法筆記

            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            導航

            統計

            常用鏈接

            留言簿(2)

            隨筆分類(65)

            隨筆檔案(65)

            文章檔案(2)

            ACM

            搜索

            積分與排名

            最新隨筆

            最新評論

            閱讀排行榜

            一本色道久久88综合日韩精品 | 欧美午夜精品久久久久免费视| 怡红院日本一道日本久久| 国产91久久精品一区二区| 国产高清美女一级a毛片久久w| 亚洲精品午夜国产va久久| 亚洲av成人无码久久精品| 久久精品免费一区二区三区| 色8激情欧美成人久久综合电| 久久久久久曰本AV免费免费| 久久国产精品一区二区| 久久九九兔免费精品6| 99久久精品国产综合一区| 久久精品国产99国产精品导航 | AV无码久久久久不卡网站下载| 99久久www免费人成精品| 亚洲愉拍99热成人精品热久久| 国产精品美女久久久久av爽| 久久久久久毛片免费播放| 99精品国产免费久久久久久下载| 狠狠88综合久久久久综合网| 精品久久久久久久国产潘金莲 | 精品无码久久久久久午夜| 四虎亚洲国产成人久久精品| 99久久成人18免费网站| 久久99精品综合国产首页| 久久精品无码午夜福利理论片| 亚洲欧洲中文日韩久久AV乱码| 久久国产影院| 久久亚洲精品无码观看不卡| 久久这里只有精品久久| 精品熟女少妇a∨免费久久| 亚洲中文字幕无码久久综合网| 色狠狠久久综合网| 亚洲午夜精品久久久久久浪潮| 青青热久久国产久精品| 日本高清无卡码一区二区久久| 久久综合久久鬼色| 久久精品卫校国产小美女| 国产精品视频久久久| 久久99精品久久久久久9蜜桃|