• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            poj 2524 Ubiquitous Religions 【并查集】

            Ubiquitous Religions
            Time Limit: 5000MS Memory Limit: 65536K
            Total Submissions: 12445 Accepted: 5900

            Description

            There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

            You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

            Input

            The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

            Output

            For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

            Sample Input

            10 9
            1 2
            1 3
            1 4
            1 5
            1 6
            1 7
            1 8
            1 9
            1 10
            10 4
            2 3
            4 5
            4 8
            5 8
            0 0
            

            Sample Output

            Case 1: 1
            Case 2: 7
            第一個(gè)并查集程序,最小生成樹不算。
             n個(gè)點(diǎn),給你m條邊,求最大能有多少個(gè)連通分量。
            #include<iostream>
            using namespace std;
            const int MAX=50001;
            int fa[MAX];

            int find(int x)
            {
                
            return fa[x]==x?x:find(fa[x]);
            }

            void Union(int x, int y)
            {
                 fa[find(x)]
            =find(y);
            }
            int main()
            {
                
            int n,m;
                
            for(int tt=1; ; tt++)
                { 
                          cin
            >>n>>m;
                         
            if( n==0&&m==0)break;
                         
                         
            for(int i=1; i<=n; i++)
                                 fa[i]
            =i; 
                                 
                         
            int max=n;              
                         
            for(int i=1,s,t; i<=m; i++)
                                 {
                                     cin
            >>s>>t;
                                     
            if(find(s)!=find(t))max=max-1;
                                     Union(s,t);              
                                 }
                                 
                         cout
            <<"Case "<<tt<<':'<<' '<<max<<endl;
                         
                }
                
                system(
            "pause");    
                
            return 0;
            }


            posted on 2010-08-26 19:20 田兵 閱讀(319) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 算法筆記

            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(2)

            隨筆分類(65)

            隨筆檔案(65)

            文章檔案(2)

            ACM

            搜索

            積分與排名

            最新隨筆

            最新評(píng)論

            閱讀排行榜

            无码人妻久久一区二区三区蜜桃 | 少妇久久久久久被弄到高潮| 久久精品国产亚洲AV蜜臀色欲| 久久er热视频在这里精品| 亚洲精品无码久久久久去q| 亚洲精品无码专区久久久| 国产三级久久久精品麻豆三级| 奇米综合四色77777久久| 色偷偷久久一区二区三区| MM131亚洲国产美女久久| 久久精品嫩草影院| 一本久久免费视频| 久久综合久久自在自线精品自| 亚洲狠狠婷婷综合久久蜜芽| 久久亚洲精品成人av无码网站| 久久91精品国产91久| 伊人久久大香线蕉亚洲五月天| 色偷偷88欧美精品久久久| 91久久精品国产91性色也| 97精品伊人久久大香线蕉app| 国产精品久久波多野结衣| 久久久久久久尹人综合网亚洲 | 草草久久久无码国产专区| 久久九九亚洲精品| 久久人人爽人人爽人人片AV东京热 | 久久婷婷国产综合精品| 国产精品久久久久久一区二区三区| 男女久久久国产一区二区三区| 热99RE久久精品这里都是精品免费 | 久久精品国产免费观看三人同眠| www性久久久com| 中文字幕无码免费久久| 国产成人精品久久| 亚洲乱码中文字幕久久孕妇黑人 | 中文字幕久久亚洲一区| 亚洲AV日韩精品久久久久久 | 国产成人综合久久精品尤物| 日本人妻丰满熟妇久久久久久| 国产激情久久久久影院| 77777亚洲午夜久久多人| 99久久国产精品免费一区二区|