• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6
            Minimizing maximizer
            Time Limit: 5000MS Memory Limit: 30000K
            Total Submissions: 1004 Accepted: 280

            Description
            The company Chris Ltd. is preparing a new sorting hardware called Maximizer. Maximizer has n inputs numbered from 1 to n. Each input represents one integer. Maximizer has one output which represents the maximum value present on Maximizer's inputs.

            Maximizer is implemented as a pipeline of sorters Sorter(i1, j1), ... , Sorter(ik, jk). Each sorter has n inputs and n outputs. Sorter(i, j) sorts values on inputs i, i+1,... , j in non-decreasing order and lets the other inputs pass through unchanged. The n-th output of the last sorter is the output of the Maximizer.

            An intern (a former ACM contestant) observed that some sorters could be excluded from the pipeline and Maximizer would still produce the correct result. What is the length of the shortest subsequence of the given sequence of sorters in the pipeline still producing correct results for all possible combinations of input values?

            Task
            Write a program that:

            reads a description of a Maximizer, i.e. the initial sequence of sorters in the pipeline,
            computes the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible input data,
            writes the result.

            Input
            The first line of the input contains two integers n and m (2 <= n <= 50000, 1 <= m <= 500000) separated by a single space. Integer n is the number of inputs and integer m is the number of sorters in the pipeline. The initial sequence of sorters is described in the next m lines. The k-th of these lines contains the parameters of the k-th sorter: two integers ik and jk (1 <= ik < jk <= n) separated by a single space.

            Output
            The output consists of only one line containing an integer equal to the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible data.

            Sample Input

            40 6
            20 30
            1 10
            10 20
            20 30
            15 25
            30 40
            

             

            Sample Output

            4
            

             

            Hint
            Huge input data, scanf is recommended.

            Source
            Central Europe 2003

            //pku1769
            /*
             * trival DP dp[i] = dp[j] + 1 (if there is a segment starting from a->i && a <= j)  o(n^2)
             * 考慮到轉(zhuǎn)移的時(shí)候選擇的是一段內(nèi)的最小dp值,運(yùn)用點(diǎn)樹可以解決
             */
            #include <string.h>
            #include <stdio.h>

            const int N = 50010;
            const int MAXINT = 1000000000;

            int n, l;

            struct ST {int i,j,m,l,r,c;} st[2*N];
            int up, cnt;

            void bd(int d, int x, int y) {
             st[d].i = x, st[d].j = y, st[d].m = (x+y)/2, st[d].c = MAXINT;
             if(x < y) {
              st[d].l = ++up; bd(up, x, st[d].m);
              st[d].r = ++up; bd(up, st[d].m+1, y);
             }
            }

            void ins(int d, int x, int c) {
             if(c < st[d].c)
              st[d].c = c;
             if(st[d].i != st[d].j) {
              if(x <= st[d].m)
               ins(st[d].l, x, c);
              else
               ins(st[d].r, x, c);
             }
            }

            int getmin(int d, int x, int y) {
             if(x <= st[d].i && y >= st[d].j)
              return st[d].c;
             int min = MAXINT;
             if(x <= st[d].m) {
              int now = getmin(st[d].l, x, y);
              if(now < min) min = now;
             }
             if(y > st[d].m) {
              int now = getmin(st[d].r, x, y);
              if(now < min) min = now;
             }
             return min;
            }

            int main() {
             int i, a, b;
             up = 0;
             scanf("%d %d ", &l, &n);
             bd(0, 1, l);
             ins(0, 1, 0);
             int max = 0;
             for(i = 0; i < n; ++i) {
              scanf("%d%d", &a, &b);
              if(a < b) {
               int min = getmin(0, a, b-1);
               ins(0, b, min+1);
              }
             }
             printf("%d\n", getmin(0, l, l));
             return 0;
            }

            Feedback

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2007-12-04 16:33 by je
            題目沒看懂,能解釋下么?

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2007-12-05 11:47 by oyjpart
            給定一個(gè)線段集,要求選擇其中一個(gè)最小的子集來覆蓋整個(gè)區(qū)域。
            要求選定的子集是按照題目給的序來覆蓋。

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2008-01-18 08:46 by Littleye
            很多測(cè)試好像得不到正確答案,例如:
            40 4
            10 30
            14 29
            25 30
            30 40
            答案應(yīng)該是2,你的程序給的是1000000000(你的初始值)
            類似的例子還有不少

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2008-01-18 12:40 by oyjpart
            你的樣例是無解的,沒有線段覆蓋【0,10】的區(qū)間。

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2008-01-19 02:33 by Littleye
            I understand now. I don't think I understood the problem thoroughly before. Although the problem description doesn't clearly indicate that all the segments given should cover the whole segment(1,N), it is the right situation or else we can't get the right output from the maximizer. Now the problem description says that we can get the right output, so the subsequences given must cover the whole segments. Thanks a lot!

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2008-01-19 12:34 by oyjpart
            you are welcome

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2008-04-18 10:44 by l-y-p
            向大牛學(xué)習(xí)學(xué)習(xí),“運(yùn)用點(diǎn)樹可以解決”,好思想,很好很強(qiáng)大。但是還有一個(gè)疑點(diǎn):在DP的時(shí)候應(yīng)該從小到大進(jìn)行,但是沒發(fā)現(xiàn)你對(duì)y坐標(biāo)進(jìn)行排序就直接進(jìn)行,那如果是考慮這樣兩組數(shù)據(jù):
            10 40
            0 10
            從10到40先確定到40的DP值為maxint+1,然后再由0~10確定10的值為1,這樣是不是有問題??你的程序我沒調(diào)試過,不曉得你是怎么處理的?

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2008-04-18 10:58 by l-y-p
            果然啊,剛調(diào)試了下,直接運(yùn)行數(shù)據(jù):
            40 2
            10 40
            0 10
            結(jié)果是1000000000,不知道是我沒看清楚還是程序的bug?

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2008-04-18 12:19 by oyjpart
            題目是有這樣的要求的:
            要求選定的子集是按照題目給的序來覆蓋。
            嘿嘿 如果我沒有理解錯(cuò)你的意思的話

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2008-04-18 22:02 by l-y-p
            汗!
            What is the length of the shortest subsequence of the given sequence of sorters
            把排序一去掉就AC了,多謝大牛指點(diǎn),呵呵。
            最先還一直在想如果可以排序的話就用不著用點(diǎn)樹了,直接貪心!

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2009-08-25 10:39 by demo
            你的程序過不了zoj 2451

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2009-09-07 23:58 by oyjpart
            題目是一樣的嗎

            # re: pku1769 新寫的線段樹(點(diǎn)樹)模版  回復(fù)  更多評(píng)論   

            2010-12-01 20:36 by LSK
            請(qǐng)仔細(xì)讀題。。。ZJU哪個(gè)是multi case的
            日韩亚洲欧美久久久www综合网| 久久国产精品久久| 国产精品成人久久久| 伊人久久大香线蕉亚洲五月天| 无码人妻久久一区二区三区 | 香蕉99久久国产综合精品宅男自| 久久久久一级精品亚洲国产成人综合AV区 | 久久99九九国产免费看小说| 成人久久免费网站| 国产成人久久久精品二区三区| 久久激情五月丁香伊人| 人妻无码αv中文字幕久久琪琪布| 人人狠狠综合久久亚洲婷婷| 久久久综合香蕉尹人综合网| 久久精品国产亚洲AV忘忧草18| 成人资源影音先锋久久资源网| 色综合久久天天综线观看| www久久久天天com| 国产亚洲美女精品久久久2020| 久久av免费天堂小草播放| 91精品国产91久久久久福利| 久久频这里精品99香蕉久| 国产精品va久久久久久久| 久久亚洲AV成人出白浆无码国产| 亚洲国产精品综合久久网络| 91精品国产色综久久| 99精品国产在热久久无毒不卡 | 99久久精品免费国产大片| 午夜精品久久久久久中宇| 欧美久久综合九色综合| 久久www免费人成精品香蕉| 久久96国产精品久久久| 久久久久亚洲AV无码网站| 亚洲国产欧美国产综合久久| 中文成人无码精品久久久不卡| 久久精品国产亚洲Aⅴ香蕉 | 亚洲?V乱码久久精品蜜桃| 国产成人精品久久一区二区三区av | AV色综合久久天堂AV色综合在| 亚洲AV无码久久精品蜜桃| 亚洲国产另类久久久精品小说 |