• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Increasing Speed Limits

            Problem

            You were driving along a highway when you got caught by the road police for speeding. It turns out that they've been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

            You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that's why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

            Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

            For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

            Input

            The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

            Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

            for i = 0 to n-1
            print A[i mod m]
            A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

            Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

            Output

            For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.

            Limits

            1 ≤ N ≤ 20
            1 ≤ m ≤ 100
            0 ≤ X ≤ 109
            0 ≤ Y ≤ 109
            1 ≤ Z ≤ 109
            0 ≤ A[i] < Z

            Small dataset

            1 ≤ mn ≤ 1000

            Large dataset

            1 ≤ mn ≤ 500 000

            Sample


            Input
             

            Output
             
            2
            5 5 0 0 5
            1
            2
            1
            2
            3
            6 2 2 1000000000 6
            1
            2

            Case #1: 15
            Case #2: 13

            The sequence of speed limit signs for case 2 should be 1, 2, 0, 0, 0, 4.

            沒趕上Round1A 郁悶。
            Round1C Solve1和2,3的large不會做,菜。Rank好像是60多,能過。

            賽后學習了下,也不算太難。
            本來DP方程是這樣的
            for(i = 0; i < n; ++i) {
             for(j = 0; j < i; ++j) {
              if(A[j] < A[i]) {
                dp[i] += dp[j];
              }
             }
            }
            如果對A排序并且離散化,則變成了
            for(i=0; i < n; ++i) {
              for(j = 0; j < A[i]; ++j) {
               dp[A[i]] += dp[j];
              }
            }


            大家注意看,內(nèi)循環(huán)其實是一個區(qū)間求和。那么對于這種求和,線段樹只可以做到NlogN的。
            記得以前寫過一道題的解題報告,是類似的。
            pku1769 點樹解決塊查詢點操作

            下面是代碼:(solve2函數(shù)是一個n^2的DP,偶水small input用的)
            // Solution by alpc12  
            #include 
            <stdio.h>
            #include 
            <cassert>
            #include 
            <map>
            #include 
            <algorithm>
            using namespace std;

            const int M = 100;
            const int N = 500010;
            const int MOD = 1000000007;

            typedef 
            long long LL;

            int n, m, X, Y, Z;
            int A[N], S[N];
            int st[1048576];
            int upperbound = 524288;
            int dp[N];

            void generate() {
                
            int i;
                
            for(i = 0; i < n; ++i) {
                    S[i] 
            = A[i%m];
                    A[i
            %m] = ((LL)X*A[i%m]+(LL)Y*(i+1))%Z;
                }
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = S[i];  
                }
            }

            int get(int x, int y) { // 左閉右開
                x += upperbound, y += upperbound;
                
            int ans = 0;
                
            while(x + 1 < y) {
                    
            if(x&1) { // x是右子樹 
                        ans = (ans + st[x]) % MOD;
                        x
            ++;
                    }
                    
            if(y&1) { // y是右子樹
                        y--;
                        ans 
            = (ans + st[y]) % MOD;
                    }
                    x 
            >>= 1;
                    y 
            >>= 1;
                }
                
            if(x < y) 
                    ans 
            = (ans + st[x]) % MOD;
                
            return ans;
            }

            void ins(int x, int a) {
                x 
            += upperbound;
                
            while(x > 0) {
                    st[x] 
            = (st[x] + a) % MOD;
                    x 
            >>= 1;
                }
            }

            void solve() {
                memset(st, 
            0sizeof(st));
                sort(S, S 
            + n);
                map
            <intint> mm;
                
            int i, j = 0, ans = 0;
                
            for(i = 0; i < n; ++i) {
                    
            if(!mm.count(S[i])) {
                        mm[S[i]] 
            = ++j;
                    }
                }
                ins(
            01);
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = mm[A[i]];
                    
            int sum = get(0, A[i]);
                    ans 
            = (ans + sum) % MOD;
                    ins(A[i], sum);
                }
                printf(
            "%d\n", ans);
            }

            void solve2() {
                
            int i, j, k;
                
            for(i = 0; i < n; ++i) dp[i] = 1;
                
            for(i = 1; i < n; ++i) {
                    
            for(j = 0; j < i; ++j) {
                        
            if(S[j] < S[i]) {
                            dp[i] 
            += dp[j];
                            dp[i] 
            %= MOD;
                        }
                    }
                }
                LL sum 
            = 0;
                
            for(i = 0; i < n; ++i) {
                    sum 
            += dp[i];
                    sum 
            %= MOD;
                }
                printf(
            "%I64d\n", sum);
            }

            int main()
            {
            //    freopen("C-large.in", "r", stdin);
            //    freopen("C-large.txt", "w", stdout);

                
            int ntc, i, j, k, tc=0;
                scanf(
            "%d"&ntc);
                
            while(ntc--) {
                    printf(
            "Case #%d: "++tc);
                    scanf(
            "%d%d%d%d%d"&n, &m, &X, &Y, &Z);
                    
            for(i = 0; i < m; ++i) scanf("%d", A+i);
                    generate();
            //        solve2();
                    solve();
                }
                
            return 0;
            }

            国内精品久久久久影院亚洲| 一本一本久久a久久综合精品蜜桃| 久久亚洲AV成人无码国产| 狠狠色婷婷久久一区二区三区 | 国产成人久久精品区一区二区| 国产精品久久久久久福利漫画| 精品无码人妻久久久久久| 久久久久亚洲AV无码观看| 日本免费久久久久久久网站| 欧美精品丝袜久久久中文字幕 | 91精品婷婷国产综合久久| 伊人久久精品影院| 爱做久久久久久| 国产午夜精品久久久久免费视| 无码乱码观看精品久久| 久久久久综合网久久| 久久精品中文字幕无码绿巨人| 亚洲а∨天堂久久精品9966| 久久婷婷久久一区二区三区| 久久久久人妻一区二区三区| AA级片免费看视频久久| 久久精品国产亚洲av水果派| 精品国产青草久久久久福利| 久久伊人中文无码| 久久成人国产精品一区二区| 国产精品99久久久久久www| 国产精品久久毛片完整版| 91久久婷婷国产综合精品青草| 久久精品毛片免费观看| 伊人久久大香线蕉av不卡| 亚洲精品无码久久久久sm| 国产精品久久久久久久久软件| 午夜肉伦伦影院久久精品免费看国产一区二区三区| 国产亚洲精品美女久久久| 99精品久久久久中文字幕| 2021精品国产综合久久| 日本精品久久久久中文字幕| 亚洲嫩草影院久久精品| 蜜桃麻豆www久久国产精品| 性做久久久久久久久浪潮| 久久丫忘忧草产品|