• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            中南賽A題 Accumulation Degree

            Posted on 2008-05-05 20:59 oyjpart 閱讀(3066) 評(píng)論(9)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            Accumulation Degree
            Time Limit: 5000MS
            Memory Limit: 65536K
            Total Submissions: 248
            Accepted: 30

            Description

            Trees are an important component of the natural landscape because of their prevention of erosion and the provision of a specific ather-sheltered ecosystem in and under their foliage. Trees have also been found to play an important role in producing oxygen and reducing carbon dioxide in the atmosphere, as well as moderating ground temperatures. They are also significant elements in landscaping and agriculture, both for their aesthetic appeal and their orchard crops (such as apples). Wood from trees is a common building material.

            Trees also play an intimate role in many of the world's mythologies. Many scholars are interested in finding peculiar properties about trees, such as the center of a tree, tree counting, tree coloring. A(x) is one of such properties.

            A(x) (accumulation degree of node x) is defined as follows:

            1. Each edge of the tree has an positive capacity.
            2. The nodes with degree of one in the tree are named terminals.
            3. The flow of each edge can't exceed its capacity.
            4. A(x) is the maximal flow that node x can flow to other terminal nodes.

            Since it may be hard to understand the definition, an example is showed below:


            A(1)=11+5+8=24
            Details: 1->2 11
              1->4->3 5
              1->4->5 8(since 1->4 has capacity of 13)
            A(2)=5+6=11
            Details: 2->1->4->3 5
              2->1->4->5 6
            A(3)=5
            Details: 3->4->5 5
            A(4)=11+5+10=26
            Details: 4->1->2 11
              4->3 5
              4->5 10
            A(5)=10
            Details: 5->4->1->2 10

            The accumulation degree of a tree is the maximal accumulation degree among its nodes. Here your task is to find the accumulation degree of the given trees.

            Input

            The first line of the input is an integer T which indicates the number of test cases. The first line of each test case is a positive integer n. Each of the following n - 1 lines contains three integers x, y, z separated by spaces, representing there is an edge between node x and node y, and the capacity of the edge is z. Nodes are numbered from 1 to n.
            All the elements are nonnegative integers no more than 200000. You may assume that the test data are all tree metrics.

            Output

            For each test case, output the result on a single line.
             

            Sample Input

            1
            5
            1 2 11
            1 4 13
            3 4 5
            4 5 10

            Sample Output

            26

            Source


            這道題的基本思想是樹形DP,如果不能理解的話請(qǐng)?jiān)噲D把雙向邊看成兩個(gè)單向邊,再比劃比劃就出來了。
            當(dāng)然不一定非要以邊做為DP的單元,也可以歸到邊上(如果你有那份心的話)。
            比賽的時(shí)候因?yàn)閿?shù)據(jù)量大而Stack Overflow,一直想寫人工模擬棧,但因?yàn)闆]寫過,在比賽中寫不出來。

            五一節(jié)虛心的跟alpc62學(xué)習(xí)了怎么寫人工模擬棧,核心思想就是將同一個(gè)DFS內(nèi)的不同DFS做個(gè)標(biāo)記,這樣在出棧的時(shí)候就可以判斷自己所處的位置,也就知道自己該采取什么行動(dòng)了。
            比如
            void DFS(int x) {
                for(int i = 0; i < head[x].size(); ++i) {
                   DFS(head[x][i]);
                }
            }
            如果把(x, i)這個(gè)2元組壓入棧也就知道自己現(xiàn)在所處的地方了。
            如果有更多的內(nèi)部DFS,同樣是加對(duì)應(yīng)的標(biāo)記。

            當(dāng)然,BFS也是一種很好的選擇(應(yīng)該說大多數(shù)隊(duì)伍會(huì)選擇BFS而不是人工模擬棧)

            //Accumulation Degree in BFS

            #include <vector>
            #include <algorithm>
            #include <iostream>
            using namespace std;

            #define Min(a, b) (a<b?a:b)
            #define Max(a, b) (a>b?a:b)

            struct Node
            {
                int x, i, pre;
                Node() {}
                Node(int xx, int ii, int pp) {x=xx, i = ii, pre=pp;}
            };

            struct Edge
            {
                int x, w, dp;
                Edge() {}
                Edge(int xx, int ww, int dd=0) { x=xx,w=ww,dp=dd;}
            };

            const int N = 200010;
            vector<Edge> e[N];
            bool chk[N];
            int n, flow[N];

            void solve() {
                int i, j, k;
                vector<Node> Q;

                fill(chk, chk + n, 0);
                fill(flow, flow + n, 0);

                for(i = 0; i < n && e[i].size()!=1; ++i);
                int st = 0, end = 0;
                chk[i] = 1;
                for(j = 0; j < e[i].size(); ++j) {
                    Q.push_back(Node(i, j, -1));
                    end++;
                    chk[e[i][j].x] = 1;
                }
                while(st < end) {
                    int x = e[Q[st].x][Q[st].i].x, pre = Q[st].pre;
                    for(i = 0; i < e[x].size(); ++i) {
                        if(!chk[e[x][i].x]) {
                            Q.push_back(Node(x, i, st));
                            end++;
                            chk[e[x][i].x] = 1;
                        }
                    }
                    ++st;
                }
                for(i = end-1; i >= 0; --i) {
                    int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
                    if(e[e[x][idx].x].size() == 1) e[x][idx].dp = e[x][idx].w;
                    else e[x][idx].dp = Min(e[x][idx].dp, e[x][idx].w);
                    if(pre == -1) continue;
                    int prex = Q[pre].x, preidx = Q[pre].i;
                    e[prex][preidx].dp += e[x][idx].dp;
                }


                for(i = 0; i < e[Q[0].x].size(); ++i) {
                    flow[Q[0].x] += e[Q[0].x][i].dp;
                }
                for(i = 0; i < end; ++i) {
                    int x = Q[i].x, pre = Q[i].pre, idx = Q[i].i;
                    int y = e[x][idx].x, xx;
                    for(xx = 0; xx < e[y].size() && e[y][xx].x != x; ++xx);
                    if(pre == -1) {
                        e[y][xx].dp = e[y][xx].w;
                    }
                    else {
                        e[y][xx].dp = Min(e[y][xx].dp, e[y][xx].w);
                    }
                    for(j = 0; j < e[y].size(); ++j) {
                        flow[y] += e[y][j].dp;
                    }
                    for(j = 0; j < e[y].size(); ++j) {
                        int yy = e[y][j].x;
                        if(yy == x) continue;
                        for(k = 0; k < e[yy].size() && e[yy][k].x != y; ++k);
                        e[yy][k].dp = flow[y] - e[y][j].dp;
                    }
                }

                int max = 0;
                for(i = 0; i < n; ++i)
                    max = Max(max, flow[i]);
                printf("%d\n", max);
            }

            int main() {
                int ntc;
                int i;
                int x, y, w;
                scanf("%d", &ntc);
                while(ntc--) {
                    scanf("%d", &n);
                    for(i = 0; i < n; ++i) e[i].clear();
                    for(i = 0; i < n-1; ++i) {
                        scanf("%d %d %d", &x, &y, &w);
                        --x; --y;
                        e[x].push_back(Edge(y, w));
                        e[y].push_back(Edge(x, w));
                    }
                    solve();
                }
                return 0;
            }


            Feedback

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-06 14:41 by wlzb
            不錯(cuò)呀,上原創(chuàng)精華了

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-06 18:00 by oyjpart
            哦?

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-12 21:15 by alpc55
            太強(qiáng)了,你竟然模擬棧……

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-13 22:52 by ecnu_zp
            哦~~
            學(xué)習(xí)學(xué)習(xí)·~

            公網(wǎng)能進(jìn)你們的oj系統(tǒng)嗎??

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-13 22:52 by ecnu_zp
            哦~~
            學(xué)習(xí)學(xué)習(xí)·~

            公網(wǎng)能進(jìn)你們的oj系統(tǒng)嗎??
            教育網(wǎng)

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-13 23:50 by oyjpart
            我們是軍網(wǎng) 外網(wǎng)應(yīng)該不能訪問

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-14 17:15 by ecnu_zp
            我還是不太明白啊~
            我想的dp是N^2A的,因?yàn)橐獙?duì)所有點(diǎn)執(zhí)行一次~~
            我弱,能不能教我一下啊。

            ecnu_zp@yahoo.cn
            QQ:345717212
            MSN: arena_zp@live.cn

            ^_^

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-05-14 20:08 by oyjpart
            每條邊拆成2條邊 。 然后對(duì)每條邊設(shè)一個(gè)DP值。
            比如邊A->B. B連接的其他點(diǎn)的集合叫做S(S中去掉A)
            dp[A->B] = Min(Capacity[A->B], 加合(dp[B->Ci]));
            可以通過2次DFS來求出這些DP值。第一次求出一個(gè)方向的邊的DP值,再一次求出反向。
            試著畫個(gè)圖來理解吧:)

            # re: 中南賽A題 Accumulation Degree  回復(fù)  更多評(píng)論   

            2008-07-26 06:06 by lengbufang
            看看!!
            伊人色综合久久天天网| 亚洲AV无一区二区三区久久| 久久久久99精品成人片牛牛影视| 久久精品国产精品亜洲毛片| 久久99这里只有精品国产| 久久婷婷国产综合精品 | 伊人久久综合成人网| 亚洲国产精品久久| 久久国产欧美日韩精品| 国产精品免费久久久久影院| 亚洲综合精品香蕉久久网| 久久e热在这里只有国产中文精品99| 久久中文字幕精品| 91久久精品无码一区二区毛片| 囯产精品久久久久久久久蜜桃| 久久精品国产WWW456C0M| 999久久久免费精品国产| 久久久SS麻豆欧美国产日韩| 国产精品99久久久久久猫咪| 国产午夜免费高清久久影院| 久久久久青草线蕉综合超碰| 精品无码人妻久久久久久| 色欲av伊人久久大香线蕉影院| 久久精品中文字幕一区| 青青热久久综合网伊人| 99精品国产在热久久| av无码久久久久不卡免费网站| 色欲久久久天天天综合网精品 | 香蕉久久夜色精品国产2020| 国产成人精品久久综合| 亚洲狠狠综合久久| 一本久久久久久久| 国产精品热久久毛片| 狠狠色综合久久久久尤物| 国内精品久久久久久久涩爱| 日本久久久久久中文字幕| 中文字幕成人精品久久不卡| 一本大道加勒比久久综合| 久久久WWW免费人成精品| 久久精品免费大片国产大片| 中文精品久久久久人妻|