• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU2504 Rounding Box

            Posted on 2008-05-04 14:41 oyjpart 閱讀(2711) 評論(3)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            前幾天的練習賽有一道計算幾何題,一向討厭計算幾何的我推了一下之后就沒做了。
            后來比賽結束的時候發(fā)現(xiàn)他們都過了,后悔不已。故做了一下,求三角形外接圓圓心那個我使用
            垂直平分線相交的那個做的。上次他們說有公式,我在書上找了個圓心公式,可是代進去不對。
            估計是書上公式寫錯了...
             Bounding box
            Time Limit: 1.0 Seconds   Memory Limit: 65536K
            Total Runs: 28   Accepted Runs: 14    Multiple test files



            The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located at vertices of regular polygons. The moving sand dunes of the desert render the excavations difficult and thus once three vertices of a polygon are discovered there is a need to cover the entire polygon with protective fabric.

            Input contains multiple cases. Each case describes one polygon. It starts with an integer n ≤ 50, the number of vertices in the polygon, followed by three pairs of real numbers giving the x and y coordinates of three vertices of the polygon. The numbers are separated by whitespace. The input ends with a n equal 0, this case should not be processed.

            For each line of input, output one line in the format shown below, giving the smallest area of a rectangle which can cover all the vertices of the polygon and whose sides are parallel to the x and y axes.

            Sample input

            4
            10.00000 0.00000
            0.00000 -10.00000
            -10.00000 0.00000
            6
            22.23086 0.42320
            -4.87328 11.92822
            1.76914 27.57680
            23
            156.71567 -13.63236
            139.03195 -22.04236
            137.96925 -11.70517
            0

            Output for the sample input

            Polygon 1: 400.000
            Polygon 2: 1056.172
            Polygon 3: 397.673

            // solution by alpc12
            #include <cstdio>
            #include <cmath>

            const double EPS = 1e-8;
            const double PI = acos(-1.0);
            const double INF = 1e100;

            #define Min(a, b) (a<b?a:b)
            #define Max(a, b) (a>b?a:b)

            struct Point {
                double x;
                double y;
                Point() {}
                Point(double xx, double yy) {
                    x = xx;
                    y = yy;
                }
            };

            struct Line {
                double a, b, c;
                Point st, end;
                Line() {}
                Line(Point& u, Point& v) {
                    st = u;
                    end = v;
                    a = v.y - u.y;
                    b = u.x - v.x;
                    c = a*u.x + b*u.y;
                }
            };

            #define sqr(a) ((a)*(a))
            #define dist(a, b) (sqrt( sqr((a).x-(b).x)+sqr((a).y-(b).y) ))
            #define cross(a, b, c)  (((b).x-(a).x)*((c).y-(a).y)-((b).y-(a).y)*((c).x-(a).x))

            inline int dblcmp(double a, double b = 0.0) {
                if(fabs(a-b) < EPS) return 0;
                return a < b ? -1 : 1;
            }

            Line bisector(Point& a, Point& b) {
                Line line(a, b), ans;    
                double midx = (a.x+b.x)/2, midy = (a.y+b.y)/2;
                ans.a = -line.b, ans.b = line.a, ans.c = ans.a*midx + ans.b*midy;
                return ans;
            }

            int line_line_intersect(Line& l1, Line& l2, Point& s) {
                double det = l1.a * l2.b - l2.a * l1.b;
                if(dblcmp(det) == 0) {
                    return -1;
                }
                s.x = (l2.b*l1.c - l1.b*l2.c) / det;
                s.y = (l1.a*l2.c - l2.a*l1.c) / det;
                return 1;
            }

            int center_3point(Point& a, Point& b, Point& c, Point& s, double& r) {
                Line x = bisector(a, b), y = bisector(b, c);
                if(line_line_intersect(x, y, s) == 1) {
                    r = dist(s, a);
                    return 1;
                }
                return 0;
            }

            Point p[55];

            int main() {

                //freopen("t.in", "r", stdin);

                int i, n, tc = 0;
                Point cent;
                while(scanf("%d", &n), n) {
                    for(i = 0; i < 3; ++i) scanf("%lf %lf ", &p[i].x, &p[i].y);
                    double r;
                    if(center_3point(p[0], p[1], p[2], cent, r) == 1) {
                        for(i = 0; i < 3; ++i)
                            p[i].x -= cent.x, p[i].y -= cent.y;
                    }
                    double alpha = acos(p[0].x / r);
                    double theta = 2 * PI / n;
                    double xmin = INF, xmax = -INF, ymin = INF, ymax = -INF;
                    for(i = 0; i < n; ++i) {
                        p[i] = Point(r * cos(alpha + i * theta),
                            r * sin(alpha + i * theta));
                        xmin = Min(xmin, p[i].x);
                        xmax = Max(xmax, p[i].x);
                        ymin = Min(ymin, p[i].y);
                        ymax = Max(ymax, p[i].y);
                    }
                    printf("Polygon %d: %.3lf\n", ++tc, (xmax-xmin)*(ymax-ymin));
                }
                return 0;
            }

            Feedback

            # re: PKU2504 Rounding Box  回復  更多評論   

            2008-05-05 09:02 by oyjpart
            那個大牛給我個正確的求圓心的坐標的公式?

            # re: PKU2504 Rounding Box  回復  更多評論   

            2008-05-05 12:21 by alpc55
            @oyjpart
            想要嗎~~~
            我有哈~~~

            # re: PKU2504 Rounding Box  回復  更多評論   

            2008-05-05 14:35 by oyjpart
            謝謝啊
            久久九九久精品国产免费直播| 国产精品久久久久天天影视| 久久青草国产手机看片福利盒子| 欧美久久精品一级c片片| 国产成人99久久亚洲综合精品 | 免费观看成人久久网免费观看| 久久精品视频免费| 日韩精品久久久久久久电影蜜臀| 国产99久久九九精品无码| 亚洲伊人久久成综合人影院| 久久99精品久久久久久9蜜桃 | 亚洲国产婷婷香蕉久久久久久| 99久久国产精品免费一区二区| 久久精品国产福利国产秒| 亚洲国产成人久久精品99| 久久99精品国产99久久| 久久精品国产乱子伦| 尹人香蕉久久99天天拍| 久久精品国产久精国产| 伊人色综合久久天天人手人婷| 欧洲性大片xxxxx久久久| 久久精品国产一区二区电影| 久久久久久毛片免费播放| 无码人妻久久久一区二区三区 | 亚洲狠狠婷婷综合久久蜜芽| 性做久久久久久久久| 国产精品激情综合久久| 久久夜色tv网站| 国产精品久久久久国产A级| 久久久久久亚洲精品成人| 久久91精品国产91久| 亚洲精品无码久久一线| 亚洲国产成人久久精品99| 日日狠狠久久偷偷色综合0| 一本久久a久久精品综合夜夜| 国产毛片久久久久久国产毛片| 久久久国产精品亚洲一区| 久久精品中文字幕无码绿巨人 | 国产日产久久高清欧美一区| 久久久久AV综合网成人| 久久99热国产这有精品|