• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6
            Minimizing maximizer
            Time Limit: 5000MS Memory Limit: 30000K
            Total Submissions: 1004 Accepted: 280

            Description
            The company Chris Ltd. is preparing a new sorting hardware called Maximizer. Maximizer has n inputs numbered from 1 to n. Each input represents one integer. Maximizer has one output which represents the maximum value present on Maximizer's inputs.

            Maximizer is implemented as a pipeline of sorters Sorter(i1, j1), ... , Sorter(ik, jk). Each sorter has n inputs and n outputs. Sorter(i, j) sorts values on inputs i, i+1,... , j in non-decreasing order and lets the other inputs pass through unchanged. The n-th output of the last sorter is the output of the Maximizer.

            An intern (a former ACM contestant) observed that some sorters could be excluded from the pipeline and Maximizer would still produce the correct result. What is the length of the shortest subsequence of the given sequence of sorters in the pipeline still producing correct results for all possible combinations of input values?

            Task
            Write a program that:

            reads a description of a Maximizer, i.e. the initial sequence of sorters in the pipeline,
            computes the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible input data,
            writes the result.

            Input
            The first line of the input contains two integers n and m (2 <= n <= 50000, 1 <= m <= 500000) separated by a single space. Integer n is the number of inputs and integer m is the number of sorters in the pipeline. The initial sequence of sorters is described in the next m lines. The k-th of these lines contains the parameters of the k-th sorter: two integers ik and jk (1 <= ik < jk <= n) separated by a single space.

            Output
            The output consists of only one line containing an integer equal to the length of the shortest subsequence of the initial sequence of sorters still producing correct results for all possible data.

            Sample Input

            40 6
            20 30
            1 10
            10 20
            20 30
            15 25
            30 40
            

             

            Sample Output

            4
            

             

            Hint
            Huge input data, scanf is recommended.

            Source
            Central Europe 2003

            //pku1769
            /*
             * trival DP dp[i] = dp[j] + 1 (if there is a segment starting from a->i && a <= j)  o(n^2)
             * 考慮到轉(zhuǎn)移的時(shí)候選擇的是一段內(nèi)的最小dp值,運(yùn)用點(diǎn)樹(shù)可以解決
             */
            #include <string.h>
            #include <stdio.h>

            const int N = 50010;
            const int MAXINT = 1000000000;

            int n, l;

            struct ST {int i,j,m,l,r,c;} st[2*N];
            int up, cnt;

            void bd(int d, int x, int y) {
             st[d].i = x, st[d].j = y, st[d].m = (x+y)/2, st[d].c = MAXINT;
             if(x < y) {
              st[d].l = ++up; bd(up, x, st[d].m);
              st[d].r = ++up; bd(up, st[d].m+1, y);
             }
            }

            void ins(int d, int x, int c) {
             if(c < st[d].c)
              st[d].c = c;
             if(st[d].i != st[d].j) {
              if(x <= st[d].m)
               ins(st[d].l, x, c);
              else
               ins(st[d].r, x, c);
             }
            }

            int getmin(int d, int x, int y) {
             if(x <= st[d].i && y >= st[d].j)
              return st[d].c;
             int min = MAXINT;
             if(x <= st[d].m) {
              int now = getmin(st[d].l, x, y);
              if(now < min) min = now;
             }
             if(y > st[d].m) {
              int now = getmin(st[d].r, x, y);
              if(now < min) min = now;
             }
             return min;
            }

            int main() {
             int i, a, b;
             up = 0;
             scanf("%d %d ", &l, &n);
             bd(0, 1, l);
             ins(0, 1, 0);
             int max = 0;
             for(i = 0; i < n; ++i) {
              scanf("%d%d", &a, &b);
              if(a < b) {
               int min = getmin(0, a, b-1);
               ins(0, b, min+1);
              }
             }
             printf("%d\n", getmin(0, l, l));
             return 0;
            }

            Feedback

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2007-12-04 16:33 by je
            題目沒(méi)看懂,能解釋下么?

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2007-12-05 11:47 by oyjpart
            給定一個(gè)線(xiàn)段集,要求選擇其中一個(gè)最小的子集來(lái)覆蓋整個(gè)區(qū)域。
            要求選定的子集是按照題目給的序來(lái)覆蓋。

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2008-01-18 08:46 by Littleye
            很多測(cè)試好像得不到正確答案,例如:
            40 4
            10 30
            14 29
            25 30
            30 40
            答案應(yīng)該是2,你的程序給的是1000000000(你的初始值)
            類(lèi)似的例子還有不少

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2008-01-18 12:40 by oyjpart
            你的樣例是無(wú)解的,沒(méi)有線(xiàn)段覆蓋【0,10】的區(qū)間。

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2008-01-19 02:33 by Littleye
            I understand now. I don't think I understood the problem thoroughly before. Although the problem description doesn't clearly indicate that all the segments given should cover the whole segment(1,N), it is the right situation or else we can't get the right output from the maximizer. Now the problem description says that we can get the right output, so the subsequences given must cover the whole segments. Thanks a lot!

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2008-01-19 12:34 by oyjpart
            you are welcome

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2008-04-18 10:44 by l-y-p
            向大牛學(xué)習(xí)學(xué)習(xí),“運(yùn)用點(diǎn)樹(shù)可以解決”,好思想,很好很強(qiáng)大。但是還有一個(gè)疑點(diǎn):在DP的時(shí)候應(yīng)該從小到大進(jìn)行,但是沒(méi)發(fā)現(xiàn)你對(duì)y坐標(biāo)進(jìn)行排序就直接進(jìn)行,那如果是考慮這樣兩組數(shù)據(jù):
            10 40
            0 10
            從10到40先確定到40的DP值為maxint+1,然后再由0~10確定10的值為1,這樣是不是有問(wèn)題??你的程序我沒(méi)調(diào)試過(guò),不曉得你是怎么處理的?

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2008-04-18 10:58 by l-y-p
            果然啊,剛調(diào)試了下,直接運(yùn)行數(shù)據(jù):
            40 2
            10 40
            0 10
            結(jié)果是1000000000,不知道是我沒(méi)看清楚還是程序的bug?

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2008-04-18 12:19 by oyjpart
            題目是有這樣的要求的:
            要求選定的子集是按照題目給的序來(lái)覆蓋。
            嘿嘿 如果我沒(méi)有理解錯(cuò)你的意思的話(huà)

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2008-04-18 22:02 by l-y-p
            汗!
            What is the length of the shortest subsequence of the given sequence of sorters
            把排序一去掉就AC了,多謝大牛指點(diǎn),呵呵。
            最先還一直在想如果可以排序的話(huà)就用不著用點(diǎn)樹(shù)了,直接貪心!

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2009-08-25 10:39 by demo
            你的程序過(guò)不了zoj 2451

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2009-09-07 23:58 by oyjpart
            題目是一樣的嗎

            # re: pku1769 新寫(xiě)的線(xiàn)段樹(shù)(點(diǎn)樹(shù))模版  回復(fù)  更多評(píng)論   

            2010-12-01 20:36 by LSK
            請(qǐng)仔細(xì)讀題。。。ZJU哪個(gè)是multi case的
            国产精品久久新婚兰兰| 久久久精品免费国产四虎| 亚洲精品无码久久毛片| 久久久www免费人成精品| 久久国产精品99国产精| 日韩影院久久| 色噜噜狠狠先锋影音久久| 国产精品久久久香蕉| 久久最新精品国产| 日韩精品久久无码中文字幕| 久久精品一区二区影院| 国产精品久久久久jk制服| 女同久久| 国产高潮国产高潮久久久91 | 婷婷国产天堂久久综合五月| 久久久久亚洲Av无码专| 一本综合久久国产二区| 国产高清美女一级a毛片久久w| 亚洲精品午夜国产va久久| 久久AⅤ人妻少妇嫩草影院| 国产精品一区二区久久| 久久综合给合久久狠狠狠97色| 久久频这里精品99香蕉久| 久久国产精品二国产精品 | 久久午夜综合久久| 亚洲成色999久久网站| 久久线看观看精品香蕉国产| 无码超乳爆乳中文字幕久久| 一本色道久久88精品综合| 三级三级久久三级久久| 国产精品久久久久久久久久影院 | 精品国产日韩久久亚洲| 久久影院午夜理论片无码| 热久久国产欧美一区二区精品 | 国产精品丝袜久久久久久不卡 | 色综合久久88色综合天天| 国产AV影片久久久久久| 国产精品伦理久久久久久| 久久99国产一区二区三区| 久久精品国产精品亚洲下载| 性高朝久久久久久久久久|