• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Robot

            Posted on 2007-09-13 10:29 oyjpart 閱讀(1514) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            好久沒貼題了。
            貼個吧。

            Robot
            Time Limit:1000MS  Memory Limit:65536K
            Total Submit:590 Accepted:208

            Description

            Let (x1, y1), …, (xn, yn) be a collection of n points in a two-dimensional plane. Your goal is to navigate a robot from point (x1, y1) to point (xn, yn). From any point (xi, yi), the robot may travel to any other point (xj, yj) at most R units away at a speed of 1 unit per second. Before it does this, however, the robot must turn until it faces (xj, yj); this turning occurs at a rate of 1 degree per second.

            Compute the shortest time needed for the robot to travel from point (x1, y1) to (xn, yn). Assume that the robot initially faces (xn, yn). To prevent floating-point precision issues, you should use the double data type instead of float. It is guaranteed that the unrounded shortest time will be no more than 0.4 away from the closest integer. Also, if you decide to use inverse trigonometric functions in your solution (hint, hint!), try atan2() rather than acos() or asin().

             

            Input

            The input test file will contain multiple test cases. Each test case will begin with a single line containing an integer R, the maximum distance between points that the robot is allowed to travel (where 10 ≤ R ≤ 1000), and an integer n, the number of points (where 2 ≤ n ≤ 20). The next n lines each contain 2 integer values; here, the ith line contains xi and yi (where −1000 ≤ xi, yi ≤ 1000). Each of the points is guaranteed to be unique. The end-of-file is denoted by a test case with R = n = −1.

             

            Output

            The output test file should contain a single line per test case indicating the shortest possible time in second (rounded to the nearest integer) required for the robot to travel from (x1, y1) to (xn, yn). If no trip is possible, print “impossible” instead.

             

            Sample Input

            10 2
            0 0
            7 0
            10 3
            0 0
            7 0
            14 5
            10 3
            0 0
            7 0
            14 10
            -1 -1

             

            Sample Output

            7
            71
            impossible

             

            Source
            Stanford Local 2006


            注意:下面這個代碼是Wrong Answer的代碼:

             1#include <queue>
             2#include <stdio.h>
             3#include <math.h>
             4using namespace std;
             5
             6const int N = 21;
             7const double EPS = 1e-8f;
             8const double INF = 1e100;
             9const double PI = acos(-1.0);
            10
            11inline int dblcmp(double a, double b) {
            12    if(fabs(a-b) < EPS) 
            13        return 0;
            14    return a < b ? -1 : 1;
            15}
            16
            17int D, n;
            18double x[N], y[N];
            19double d[N];
            20bool chk[N];
            21
            22struct Node {
            23    double a;
            24    int id;
            25    Node(){} 
            26    Node(int ii, double aa) {
            27        a = aa; 
            28        id = ii;
            29    }
            30};
            31
            32bool operator<(const Node& a, const Node& b) {
            33    return dblcmp(d[a.id], d[b.id]) == 1;
            34}
            35
            36double cal_dist(double agl, int a, int b, double& old) {
            37    old = atan2(y[b]-y[a], x[b]-x[a]);
            38    double now = fabs(old-agl);
            39    double now2 = 2*PI-fabs(old-agl);
            40    if(now2 < nownow = now2;
            41    double dist = sqrt( (x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b]) ); 
            42    if(dblcmp(dist, D) == 1
            43        return INF;
            44    return now * 180.0/PI + dist;
            45}
            46
            47void solve() {
            48    int i;
            49    priority_queue<Node> PQ;
            50    memset(chk, 0, sizeof(chk));
            51    double a = atan2(y[n-1]-y[0], x[n-1]-x[0]);
            52    PQ.push(Node(0, a));
            53    d[0= 0;
            54    for(i = 1; i < n; ++i)
            55        d[i] = INF;
            56    while(!PQ.empty()) {
            57        double a = PQ.top().a;
            58        int id = PQ.top().id;
            59        PQ.pop();
            60        if(chk[id]) continue;
            61        chk[id] = 1;
            62        if(id == n-1) {
            63            printf("%.0lf\n", d[n-1]);
            64            return;
            65        }
            66        for(i = 0; i < n; ++i) if(!chk[i]) {
            67            double nowa;
            68            double nowd = cal_dist(a, id, i, nowa);
            69            if(dblcmp(nowd+d[id], d[i]) == -1) {
            70                d[i] = nowd+d[id];
            71                PQ.push(Node(i, nowa));
            72            }
            73        }
            74    }
            75
            76    printf("impossible\n");
            77}
            78
            79int main() {
            80
            81    freopen("t.in""r", stdin);
            82//    freopen("t.out""w", stdout);
            83
            84    int i;
            85    while(scanf("%d %d"&D, &n), !(D==-1 && n==-1)) {
            86        for(i = 0; i < n; ++i)
            87            scanf("%lf%lf"&x[i], &y[i]);
            88        solve();
            89    }
            90    return 0;
            91}
            92


            這個代碼哪里錯了呢?
            思來想去想到可能是出現了下面這種情況
            一個狀態A進入隊列
            過了一會又一個狀態通過其他路徑到達A狀態 并且耗費比前面一次少
            這個代碼的做法是直接把其送入PQ,由于修改了d[A], 所以希望這個節點能夠浮上去(浮到正確的位置)。
            但是Wrong Answer。
            可能這個節點在向上浮的過程中遇到了前面這個A狀態 于是就不往上浮了。但其實前面那個狀態并沒有修正本身的位置,所以導致了新的狀態的位置出錯。

            所以還是改成了下面的代碼 AC
             1#include <queue>
             2#include <stdio.h>
             3#include <math.h>
             4using namespace std;
             5const int N = 21;
             6const double EPS = 1e-8f;
             7const double INF = 1e100;
             8const double PI = acos(-1.0);
             9inline int dblcmp(double a, double b) {
            10 if(fabs(a-b) < EPS) 
            11  return 0;
            12 return a < b ? -1 : 1;
            13}

            14int D, n;
            15double x[N], y[N];
            16double d[N];
            17bool chk[N];
            18struct Node {
            19 double a, dist;
            20 int id;
            21 Node(){} 
            22 Node(int ii, double aa, double dd) {
            23  a = aa; id = ii; dist = dd;
            24 }

            25}
            ;
            26bool operator<(const Node& a, const Node& b) {
            27 if(dblcmp(a.dist, b.dist) == 1)
            28  return true;
            29 return false;
            30}

            31double cal_dist(double agl, int a, int b, double& old) {
            32 old = atan2(y[b]-y[a], x[b]-x[a]);
            33 double now = fabs(old-agl);
            34 double now2 = 2*PI-fabs(old-agl);
            35 if(now2 < now) now = now2;
            36 double dist = sqrt( (x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b]) ); 
            37 if(dblcmp(dist, D) == 1
            38  return INF;
            39 return now * 180.0/PI + dist;
            40}

            41void solve() {
            42 int i;
            43 priority_queue<Node> PQ;
            44 memset(chk, 0sizeof(chk));
            45 double a = atan2(y[n-1]-y[0], x[n-1]-x[0]);
            46 PQ.push(Node(0, a, 0));
            47 d[0= 0;
            48 for(i = 1; i < n; ++i)
            49  d[i] = INF;
            50 while(!PQ.empty()) {
            51  double a = PQ.top().a;
            52  int id = PQ.top().id;
            53  double dist = PQ.top().dist;
            54  PQ.pop();
            55  if(chk[id]) continue;
            56  chk[id] = 1;
            57  if(id == n-1{
            58   printf("%.0lf\n", d[n-1]);
            59   return;
            60  }

            61  for(i = 0; i < n; ++i) if(!chk[i]) {
            62   double nowa;
            63   double nowd = cal_dist(a, id, i, nowa);
            64   if(dblcmp(nowd+d[id], d[i]) == -1{
            65    d[i] = nowd+d[id];
            66    PQ.push(Node(i, nowa, nowd+d[id]));
            67   }

            68  }

            69 }

            70 printf("impossible\n");
            71}

            72int main() {
            73 freopen("t.in""r", stdin);
            74 int i;
            75 while(scanf("%d %d"&D, &n), !(D==-1 && n==-1)) {
            76  for(i = 0; i < n; ++i)
            77   scanf("%lf%lf"&x[i], &y[i]);
            78  solve();
            79 }

            80 return 0;
            81}

            82
            亚洲国产精品久久久久网站| 久久se精品一区二区| 久久久综合香蕉尹人综合网| 久久久久亚洲AV无码专区体验| 久久91精品国产91| 久久久久亚洲AV成人网人人网站 | 东京热TOKYO综合久久精品| 精品久久久噜噜噜久久久| www.久久热| 国产精品99久久久精品无码| 狠狠色婷婷久久一区二区三区| 97久久久久人妻精品专区| 91精品国产高清久久久久久91| 亚洲国产成人精品无码久久久久久综合| 久久婷婷五月综合色奶水99啪| 久久久99精品一区二区| 韩国无遮挡三级久久| 亚洲AⅤ优女AV综合久久久| 久久无码人妻一区二区三区| 久久久久九九精品影院| 91精品国产91久久综合| 国产69精品久久久久APP下载| 久久久青草久久久青草| 色狠狠久久AV五月综合| 国产精品免费久久久久电影网| 99久久中文字幕| 亚洲天堂久久久| 中文国产成人精品久久亚洲精品AⅤ无码精品 | 久久久无码精品亚洲日韩按摩| 精品无码人妻久久久久久| 99国产精品久久| 亚洲国产香蕉人人爽成AV片久久| 国产精品99久久免费观看| 久久伊人五月丁香狠狠色| 久久久无码精品亚洲日韩软件| 丰满少妇人妻久久久久久4| 国内精品九九久久久精品| 国产亚洲精品久久久久秋霞| 性做久久久久久免费观看| 久久人人爽人人爽人人片AV东京热| 久久青草国产精品一区|