• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            A decorative fence
            Time Limit:1000MS  Memory Limit:10000K
            Total Submit:1548 Accepted:440

            Description
            Richard just finished building his new house. Now the only thing the house misses is a cute little wooden fence. He had no idea how to make a wooden fence, so he decided to order one. Somehow he got his hands on the ACME Fence Catalogue 2002, the ultimate resource on cute little wooden fences. After reading its preface he already knew, what makes a little wooden fence cute.
            A wooden fence consists of N wooden planks, placed vertically in a row next to each other. A fence looks cute if and only if the following conditions are met:
            ?The planks have different lengths, namely 1, 2, . . . , N plank length units.
            ?Each plank with two neighbors is either larger than each of its neighbors or smaller than each of them. (Note that this makes the top of the fence alternately rise and fall.)
            It follows, that we may uniquely describe each cute fence with N planks as a permutation a1, . . . , aN of the numbers 1, . . . ,N such that (any i; 1 < i < N) (ai − ai−1)*(ai − ai+1) > 0 and vice versa, each such permutation describes a cute fence.
            It is obvious, that there are many di erent cute wooden fences made of N planks. To bring some order into their catalogue, the sales manager of ACME decided to order them in the following way: Fence A (represented by the permutation a1, . . . , aN) is in the catalogue before fence B (represented by b1, . . . , bN) if and only if there exists such i, that (any j < i) aj = bj and (ai < bi). (Also to decide, which of the two fences is earlier in the catalogue, take their corresponding permutations, find the first place on which they differ and compare the values on this place.) All the cute fences with N planks are numbered (starting from 1) in the order they appear in the catalogue. This number is called their catalogue number.


            After carefully examining all the cute little wooden fences, Richard decided to order some of them. For each of them he noted the number of its planks and its catalogue number. Later, as he met his friends, he wanted to show them the fences he ordered, but he lost the catalogue somewhere. The only thing he has got are his notes. Please help him find out, how will his fences look like.

             

            Input
            The first line of the input file contains the number K (1 <= K <= 100) of input data sets. K lines follow, each of them describes one input data set.
            Each of the following K lines contains two integers N and C (1 <= N <= 20), separated by a space. N is the number of planks in the fence, C is the catalogue number of the fence.
            You may assume, that the total number of cute little wooden fences with 20 planks fits into a 64-bit signed integer variable (long long in C/C++, int64 in FreePascal). You may also assume that the input is correct, in particular that C is at least 1 and it doesn抰 exceed the number of cute fences with N planks.

            Output
            For each input data set output one line, describing the C-th fence with N planks in the catalogue. More precisely, if the fence is described by the permutation a1, . . . , aN, then the corresponding line of the output file should contain the numbers ai (in the correct order), separated by single spaces.

            Sample Input

            2
            2 1
            3 3

             

            Sample Output

            1 2
            2 3 1

             

            Source
            CEOI 2002


            也算是DP+分段統(tǒng)計(jì)中的經(jīng)典題了 呵呵
            DP的狀態(tài)表示如下
            dp[style][n][i][j] :
            style 代表走向 0 代表向上(也就是下次要向下) 1代表向下
            n代表總共的fence數(shù)
            i代表比當(dāng)前選擇的fence高的fence數(shù)(注意 當(dāng)前fence是一個(gè)隱藏的參數(shù) 因?yàn)樵摖顟B(tài)不需要知道當(dāng)前fence是哪個(gè) 只需要知道有多少比這個(gè)fence高 多少比這個(gè)fence低 就可以代表整個(gè)狀態(tài))
            j代表比當(dāng)前選擇的fence低的fence數(shù)

            這樣很直觀的得到了一個(gè)DP方程

                dp[0][i][j][k] += dp[1][i-1][j-m][k+m-1]; (m = 1 ... j (inclusive))

                dp[1][i][j][k] += dp[0][i-1][j+m-1][k-m];   (m = 1... k(inclusive))

            具體請(qǐng)參考源代碼

             1#include <stdio.h>
             2#include <string.h>
             3
             4const int N = 21;
             5__int64 dp[2][N][N][N];
             6int n;
             7__int64 idx;
             8bool chk[N];
             9
            10void pre() {
            11    int i, j, m;
            12
            13    memset(dp, 0, sizeof(dp));
            14
            15    dp[0][1][0][0= 1;
            16    dp[1][1][0][0= 1;
            17
            18    for(i = 2; i <= 20++i) {
            19        for(j = 0; j < i; ++j) {
            20            int k = i - j - 1;
            21            for(m = 1; m <= j; ++m) 
            22                dp[0][i][j][k] += dp[1][i-1][j-m][k+m-1];
            23            for(m = 1; m <= k; ++m)
            24                dp[1][i][j][k] += dp[0][i-1][j+m-1][k-m];
            25        }
            26    }
            27}
            28
            29void DFS(int nowint last, int style, __int64 idx) {
            30    if(now <= 0) return;
            31    int i, j;
            32    for(i = 0; i < n; ++i) if(!chk[i]) {
            33        if(style == 0 && i < last) continue;
            34        if(style == 1 && i > last) return;
            35
            36        chk[i] = true;
            37        int big = 0, small = 0;
            38        for(j = 0; j < n; ++j) if(!chk[j]) {
            39            if(j < i) small++;
            40            if(j > i) big++;
            41        }
            42
            43        if(style == 0 || style == -1) {
            44            if(idx > dp[1][now][big][small]) idx -= dp[1][now][big][small];
            45            else {
            46                printf("%d ", i+1);
            47                DFS(now-1, i, 1, idx);    return;
            48            }
            49        }
            50
            51        if(style == 1 || style == -1) {
            52            if(idx > dp[0][now][big][small]) idx -= dp[0][now][big][small];
            53            else {
            54                printf("%d ", i+1);
            55                DFS(now-1, i, 0, idx);    return;
            56            }
            57        }
            58        chk[i] = false;
            59    }
            60}
            61
            62int main() {
            63    int ntc;
            64    pre();
            65    scanf("%d "&ntc);
            66    while(ntc--) {
            67        scanf("%d %I64d"&n, &idx);
            68        memset(chk, false, sizeof(chk));
            69        DFS(n, -1-1, idx);
            70        putchar('\n');
            71    }
            72    return 0;
            73}

            Feedback

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-08-18 15:57 by deoxyz
            你的最后一維根本不需要啊.......這樣空間復(fù)雜度會(huì)下降不少啊...

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-08-18 16:27 by oyjpart
            真的么?
            那你怎么寫(xiě)的呢?

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-08-19 10:08 by deoxyz
            就你的這個(gè)程序的話 直接把所有有關(guān)最后一維的東西全部刪掉就行了,第三維完全可以用前兩維表示~而且輸出可以不用遞歸會(huì)快點(diǎn)~ 我ACM也剛學(xué)1年多點(diǎn) 有空交流交流 我QQ120148455

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-08-19 11:05 by oyjpart
            恩 是的

            # re: PKU1037 A decorative fence DP+分段統(tǒng)計(jì)  回復(fù)  更多評(píng)論   

            2007-10-10 13:28 by floyd635
            的確只要三維就可以完成...
            欧美精品一本久久男人的天堂| 国产精品无码久久综合网| 国产精品久久久久蜜芽| 人妻无码精品久久亚瑟影视| 日产精品久久久久久久| 久久免费线看线看| 2021最新久久久视精品爱| 久久精品国产免费一区| 久久亚洲sm情趣捆绑调教| 久久精品国产91久久麻豆自制| 久久涩综合| 日本精品久久久中文字幕| 久久精品综合网| 久久久久亚洲AV无码专区网站| 国产精品免费福利久久| 蜜桃麻豆WWW久久囤产精品| 狠狠人妻久久久久久综合| 奇米综合四色77777久久| 伊人 久久 精品| 久久综合一区二区无码| 国产叼嘿久久精品久久| 久久精品国产亚洲av日韩| 久久天天婷婷五月俺也去| 久久综合狠狠综合久久97色| 四虎国产永久免费久久| 国产国产成人精品久久| 久久国产精品99国产精| 亚洲精品无码久久久久去q| 亚洲国产成人精品91久久久 | 欧美性猛交xxxx免费看久久久| 国产精品欧美久久久天天影视 | 久久久免费精品re6| 久久久久久久波多野结衣高潮| 久久综合久久综合亚洲| 久久婷婷五月综合97色直播| 久久久久一级精品亚洲国产成人综合AV区 | 久久99精品久久久久久9蜜桃 | 大香网伊人久久综合网2020| 国产成人精品久久| 久久精品成人欧美大片| 欧美激情精品久久久久久久九九九|