• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU1734 Sightseeing trip (CEOI99)

            Posted on 2007-05-28 23:41 oyjpart 閱讀(2373) 評論(3)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            很久沒寫結題報告了
            今天做Sightseeing trip 上來貼個
            Ural:1004

            Sightseeing trip
            Time Limit:1000MS  Memory Limit:65536K
            Total Submit:317 Accepted:133 Special Judged

            Description
            There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

            In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

            Input
            The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

            Output
            There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

            Sample Input

            5 7
            1 4 1
            1 3 300
            3 1 10
            1 2 16
            2 3 100
            2 5 15
            5 3 20
            

             

            Sample Output

            1 3 5 2
            

             

            點數是100個 題目意思是找一個最小權圈 以任意序輸出
            從圖論的角度上考慮 應該是任意選一條邊(枚舉) 然后刪除邊 再以一個點為原點求Dijkstra 找出最小權圈 o(M*N^2)的復雜度 一個更加好的算法是限定枚舉的點為圈內序號最大的點 這樣就避免了對一個圈的多次枚舉(參考程序3)
            如果直接搜就是任選一個點開始走回到原點則記錄長度 搜的時候必須要先對每個點的邊按照邊權進行排序 以備后面大量剪枝

            程序1

             1//Solution
             2//by oyjpArt
             3//Algorithm:Search
             4#include <vector>
             5#include <iostream>
             6#include <algorithm>
             7using namespace std;
             8
             9const int N = 101;
            10struct Node {int x, w; void set(int xx, int ww) {x =xx; w = ww; }};
            11vector<Node> adj[N];
            12int nv, ne, ans[N], na, S, rec[N];
            13bool chk[N];
            14int best;
            15
            16bool operator<(const Node& a, const Node& b) {
            17 return a.w < b.w;
            18}
            19
            20void search(int x, int sum, int depth, int father) {
            21 int i;
            22 if(x == S && chk[x]) {
            23  if(sum < best) {
            24   best = sum;  na = depth;
            25   for(i = 0; i < depth; i++) ans[i] = rec[i];
            26  }
            27  return;
            28 }
            29 rec[depth] = x;
            30 for(i = 0; i < adj[x].size(); ++i) if(adj[x][i].x != father) if(!chk[adj[x][i].x] || adj[x][i].x == S) {
            31  chk[adj[x][i].x] = 1;
            32  if(sum + adj[x][i].w < best) search(adj[x][i].x, sum + adj[x][i].w, depth+1, x);
            33  chk[adj[x][i].x] = 0;
            34 }
            35
            36
            37int main() {
            38 scanf("%d %d"&nv, &ne);
            39 int i, u, v, w;
            40 Node now;
            41 for(i = 0; i < ne; i++) {
            42  scanf("%d %d %d"&u, &v, &w);
            43  --u; --v;
            44  now.set(v, w);
            45  adj[u].push_back(now);
            46  now.x = u;
            47  adj[v].push_back(now);
            48 }
            49 for(i = 0; i < nv; ++i) 
            50  sort(adj[i].begin(), adj[i].end());
            51 
            52 best = 123456789;
            53 for(i = 0; i < nv; ++i) {
            54  memset(chk, 0, nv * sizeof(bool));
            55  S = i;
            56  search(i, 00-1);
            57 }
            58
            59 if(best == 123456789) { printf("No solution.\n"); return 0; }
            60 printf("%d", ans[0]+1);
            61 for(i = 1; i < na; ++i) printf(" %d", ans[i]+1); putchar('\n');
            62
            63 return 0;
            64}
            65
            66



            程序2

             1//Solution
             2//by oyjpArt
             3//Algorithm : Enumerate + Dijkstra
             4#include <stdio.h>
             5#include <string.h>
             6
             7const int N = 101, M = 20001, MAXINT = 2000000000;
             8int ne, nv;
             9struct E {
            10 int x, w; E* next;
            11 void set(int xx, int ww, E* nn) {x = xx; w = ww; next = nn;}
            12}e[M], * head[N];
            13int best, dist[N], q[N], ans[N], pre[N], na;
            14bool chk[N];
            15
            16void Dijk(int st, int endint ow) {
            17 memset(chk, 0, sizeof(chk));
            18 memset(dist, -1, sizeof(dist));
            19 int qe = 1, qs = 0, i;
            20 E * p;
            21 for(i = 0; i < nv; ++i) if(i != st) {
            22  for(p = head[st]; p != NULL; p = p->next) {
            23   if(p->== i && p->> 0 && (dist[i] == -1 || dist[i] > p->w ) ) 
            24    dist[i] = p->w;
            25  }
            26  if(dist[i] == -1) dist[i] = MAXINT;
            27 }
            28 q[0= st;
            29 dist[st] = 0;
            30 chk[st] = 1;
            31 for(i = 0; i < nv; ++i) pre[i] = st;
            32 pre[st] = -1;
            33 while(qs < qe) {
            34  int cur = q[qs++];
            35  chk[cur] = 1;
            36  if(ow + dist[cur] >= best) return;
            37  if(cur == end) {
            38   if(dist[end+ ow < best) {
            39    na = 0;
            40    for(i = cur; i != -1; i = pre[i]) ans[na++= i;
            41    best = dist[end+ ow;
            42   }
            43   return;
            44  }
            45  int _min = MAXINT, mini = -1;
            46  for(i = 0; i < nv; i++if(!chk[i]) {
            47   if(dist[i] < _min) {
            48    _min = dist[i];
            49    mini = i;
            50   }
            51  }
            52  if(mini == -1) return;
            53  q[qe++= mini;
            54  for(i = 0; i < nv; ++i) if(!chk[i]) {
            55   for(p = head[mini]; p != NULL; p = p->nextif(p->== i)  break;
            56   if(p == NULL) continue;
            57   if(p->> 0 && p->+ dist[mini] < dist[i]) {
            58    dist[i] = p->+ dist[mini];
            59    pre[i] = mini;
            60   }
            61  }
            62 }
            63}
            64
            65int main() {
            66 scanf("%d %d"&nv, &ne);
            67 memset(head, NULL, nv * sizeof(E*));
            68 int i, u, v, w;
            69 for(i = 0; i < ne; ++i) {
            70  scanf("%d %d %d"&u, &v, &w);
            71  --u; --v;
            72  e[2*i].set(u, w, head[v]);
            73  head[v] = &e[2*i];
            74  e[2*i+1].set(v, w, head[u]);
            75  head[u] = &e[2*i+1];
            76 }
            77 E * p, * q;
            78 best = MAXINT;
            79 for(i = 0; i < nv; ++i) {
            80  for(p = head[i]; p != NULL; p = p->next) {
            81   int w = p->w;
            82   int j = p->x;
            83   for(q = head[i]; q != NULL; q = q->nextif(q->== j) q->= -q->w;
            84   for(q = head[j]; q != NULL; q = q->nextif(q->== i) q->= -q->w;
            85   Dijk(i, j, w);
            86   for(q = head[i]; q != NULL; q = q->nextif(q->== j) q->= -q->w;
            87   for(q = head[j]; q != NULL; q = q->nextif(q->== i) q->= -q->w;
            88  }
            89 }
            90 if(best == MAXINT) printf("No solution.\n");
            91 else {
            92  printf("%d", ans[0+ 1);
            93  for(i = 1; i < na; ++i) printf(" %d", ans[i] + 1); putchar('\n');
            94 }
            95 return 0;
            96}
            97//唉 不用vector代碼量增大好多。。暈倒
            98

            程序3:
            經wywcgs大牛提醒 改寫成了Floyd程序 時間銳減
             1#include <stdio.h>
             2#include <string.h>
             3
             4const int N = 101;
             5const int MAXINT = 123456789;
             6int ne, nv;
             7int adj[N][N];
             8int pre[N][N];
             9int conn[N][N];
            10int na, ans[N];
            11int best;
            12
            13void floyd() {
            14    int i, j, k, tmp, p;
            15    for(k = 0; k < nv; ++k) {
            16        for(i = 0; i < k; ++i) {
            17            for(j = 0; j < k; ++j) if(conn[i][k] && conn[k][j] && j != i) {
            18                if( (tmp = adj[i][j] + conn[k][i] + conn[j][k]) < best) {
            19                    best = tmp;
            20                    na = 1; ans[0= k; p = i;
            21                    while(p != -1) {
            22                        ans[na++= p;
            23                        p = pre[p][j];
            24                    }
            25                }
            26            } 
            27        }
            28        for(i = 0; i < nv; ++i) 
            29            for(j = 0; j < nv; ++j) {
            30                if(adj[i][j] > adj[i][k] + adj[k][j]) {
            31                    adj[i][j] = adj[i][k] + adj[k][j];
            32                    pre[i][j] = pre[i][k];
            33                }
            34            }
            35    }
            36}
            37
            38int main() {
            39    int i, j, u, v, w;
            40    memset(pre, -1, sizeof(pre));
            41    scanf("%d %d"&nv, &ne);
            42    for(i = 0; i < nv; ++i) {
            43        for(j = i+1; j < nv; ++j) 
            44            adj[i][j] = adj[j][i] = MAXINT;
            45        adj[i][i] = 0;
            46    }
            47    for(i = 0; i < ne; ++i) {
            48        scanf("%d %d %d"&u, &v, &w);
            49        --u; --v;
            50        if(w < adj[u][v])     
            51            conn[u][v] = conn[v][u] = adj[u][v] = adj[v][u] = w;
            52        pre[u][v] = v, pre[v][u] = u;
            53    }
            54    best = MAXINT;
            55    floyd();
            56    if(best == MAXINT) printf("No solution.\n");
            57    else {
            58        for(i = 0; i < na; ++i) {
            59            printf("%d", ans[i] + 1);
            60            if(i != na-1) putchar(' ');
            61            else putchar('\n');
            62        }
            63    }
            64
            65    return 0;
            66}
            67

            Feedback

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2007-05-30 22:08 by wywcgs
            呃……這道題有O(V^3)做法……一次floyd或者V次dijkstra……
            你可以再想想,總之不是很難……

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2007-07-28 17:27 by dingyihamigua
            大牛人啊!!
            很經典的東西!!
            謝謝了哈!
            辛苦了!!

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2011-11-10 15:58 by wuyiqi
            我感覺如果用搜索的話好像排序與不排序是一樣的吧,因為一個點是等可能的搜向鄰邊的,排序改變不了什么,就算先搜到最短的鄰邊,隨后還是有可能越走越遠
            青青青国产成人久久111网站| 香蕉久久一区二区不卡无毒影院| 久久久久久一区国产精品| 久久精品视频91| 亚洲精品高清国产一线久久| 久久99精品国产麻豆宅宅| 中文字幕无码久久精品青草| 青青草原精品99久久精品66| 色综合久久中文综合网| 久久强奷乱码老熟女网站| 亚洲国产精品久久久久| 久久人人爽人人爽人人片AV高清 | 狠狠精品久久久无码中文字幕| 久久男人中文字幕资源站| 久久精品国产亚洲AV电影| 亚洲国产成人久久笫一页| 久久综合中文字幕| 久久精品国产清高在天天线| 亚洲欧美精品一区久久中文字幕| 99久久综合狠狠综合久久止| 亚洲精品乱码久久久久久蜜桃不卡 | 日日狠狠久久偷偷色综合免费| 久久综合色之久久综合| 国产精品久久久久久| 久久婷婷五月综合97色| 一本色道久久88精品综合| 日本久久中文字幕| 国产亚州精品女人久久久久久| 99久久精品国产麻豆| 久久成人影院精品777| 一本一道久久综合狠狠老| 国产美女亚洲精品久久久综合| 亚洲国产精品嫩草影院久久 | 性色欲网站人妻丰满中文久久不卡 | 国内精品久久久久久久影视麻豆| 97精品伊人久久久大香线蕉| 久久99精品国产麻豆蜜芽| 99久久www免费人成精品 | 99久久精品国产一区二区| 久久久国产精华液| 久久久久99精品成人片欧美 |