• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Picture
            Time Limit:2000MS? Memory Limit:10000K
            Total Submit:742 Accepted:411

            Description
            A number of rectangular posters, photographs and other pictures of the same shape are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be partially or totally covered by the others. The length of the boundary of the union of all rectangles is called the perimeter.

            Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.


            The corresponding boundary is the whole set of line segments drawn in Figure 2.

            The vertices of all rectangles have integer coordinates.

            Input
            Your program is to read from standard input. The first line contains the number of rectangles pasted on the wall. In each of the subsequent lines, one can find the integer coordinates of the lower left vertex and the upper right vertex of each rectangle. The values of those coordinates are given as ordered pairs consisting of an x-coordinate followed by a y-coordinate.

            0 <= number of rectangles < 5000
            All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.

            Output
            Your program is to write to standard output. The output must contain a single line with a non-negative integer which corresponds to the perimeter for the input rectangles.

            Sample Input

            7
            -15 0 5 10
            -5 8 20 25
            15 -4 24 14
            0 -6 16 4
            2 15 10 22
            30 10 36 20
            34 0 40 16

            Sample Output

            228

            Source
            IOI 1998

            做這道題之前我用線段樹的結構過了幾個題目 效果沒有我想象的好
            但是這道題明顯就出了差距 直接離散化與用線段樹來做效果差了有將近10倍!




            線段樹的基本應用:請參考這篇文章

            http://m.shnenglu.com/sicheng/archive/2006/11/24/15640.html

            這里我們再加上測度與連續段的作用:

            (一)、?? 測度

            由于線段樹結構遞歸定義,其測度也可以遞歸定義。增加數據域 Lines_Tree.M 表示以該結點為根的子樹的測度。 M 取值如下:

            ?

            ?

            ???????? a[j] – a[i] ?? 該結點 Count>0

            M? =??? 0???????? ? 該結點為葉結點且 Count=0

            ???????? Leftchild .M + Rightchild .M ? 該結點為內部結點且 Count=0

            ?

            據此,可以用 Lines_Tree.UpData 來動態地維護 Lines_Tree.M UpData 在每一次執行 Insert Delete 之后執行。定義如下:

            Procedure? Lines_Tree.UpData

            1??????? if? count? >? 0

            2??????? ??then? M? ? ? a[j]? ? [i]????? { 蓋滿區間,測度為 a[j] – a[i]}

            3??????? ??else? if? j? -? i? =? 1 ????????{ 是否葉結點 }

            4??????? ??????????then? M? ? ? 0 ??????{ 該結點是葉結點 }

            5??????? ??????????else? M? ? ? Leftchild .M? +? Rightchild .M
            ????????????????????????????????????????? ?{
            內部結點 }

            UpData 的復雜度為 O(1) ,則用 UpData 來動態維護測度后執行根結點的 Insert Delete 的復雜度仍為 O(logN)

            (二)、?? 連續段數

            這里的連續段數指的是區間的并可以分解為多少個獨立的區間。如 [1 2] [23] [5 6] 可以分解為兩個區間 [1 3] [5 6] ,則連續段數為 2 。增加一個數據域 Lines_Tree.line 表示該結點的連續段數。 Line 的討論比較復雜,內部結點不能簡單地將左右孩子的 Line 相加。所以再增加 Lines_Tree.lbd Lines_Tree.rbd 域。定義如下:

            ?

            ???????? 1??? 左端點 I 被描述區間蓋到

            lbd? =?

            ???????? 0? ?? 左端點 I 不被描述區間蓋到

            ?

            ???????? 1???? 右端點 J 被描述區間蓋到

            rbd? =?

            ??????? ?0 ???? 右端點 J 不被描述區間蓋到

            ?

            lbd rbd 的實現:

            ????????? 1? 該結點 count > 0

            lbd? =??? 0? 該結點是葉結點且 count = 0

            ????????? leftchild .lbd??? 該結點是內部結點且 Count=0

            ? ????????1? 該結點 count > 0

            rbd? =??? 0? 該結點是葉結點且 count = 0

            ????????? rightchild .rbd?? 該結點是內部結點且 Count=0

            有了 lbd rbd Line 域就可以定義了:

            ??????? 1? 該結點 count > 0

            Line =?? 0? 該結點是葉結點且 count = 0

            ??????? ?Leftchild .Line? +? Rightchild .Line? -? 1
            ????????
            當該結點是內部結點且 Count=0 Leftchild .rbd = 1 Rightchild .lbd = 1

            ???????? Leftchild .Line? +? Rightchild .Line??
            ??? ?????
            當該結點是內部結點且 Count=0 Leftchild .rbd Rightchild .lbd 不都為 1

            ?

            據此,可以定義 UpData’ 動態地維護 Line 域。與 UpData 相似, UpData’ 也在每一次執行 Insert Delete 后執行。定義如下:

            Procedure? Lines_Tree.UpData’

            1??????? if? count? >? 0 ??????????{ 是否蓋滿結點表示的區間 }

            2??????? ??then? lbd?? ? ? 1

            3??????? ???????rbd?? ? ? 1

            4??????? ???????Line? ? ? 1

            5??????? ??else? if? ?j? -? i? =? 1???? { 是否為葉結點 }

            6??????? ??????????then? lbd?? ? ? 0?? { 進行到這一步,如果為葉結點,
            ??????????????????????????????????????????????? count = 0}

            7??????? ????????????????rbd? ? ? 0

            8??????? ????????????????line? ? ? 0

            9??????? ??????????else? line? ? ?? Leftchild .line? +? Rightchild .line? -?

            ????????????????????????????? Leftchild .rbd * Rightchild .lbd

            { 用乘法確定 Leftchild .rbd Rightchild .lbd 是否同時為 1}

            ?

            于是我按下面的步驟重寫了程序:

            1.??????? 以矩形頂點坐標切割平面,實現橫縱坐標的離散化并建立映射 X_Map Y_Map

            2.??????? 事件排序

            3.??????? Root.Build(1, N*2)

            4.??????? Nowm??? ? ? 0

            5.??????? NowLine? ? ? 0

            6.??????? Ans????? ? ? 0

            7.??????? for?? I? ? ? 1? to? 事件的最大編號

            8.??????? ??do?? if? I 是插入事件

            9.??????? ??????????then? Root.Insert(Y_Map.Coord[ 事件線段頂點 1]
            ???????????????????????? Y_Map.Coord[
            事件線段頂點 2])

            10.??? ??????????else? Root.Delete(Y_Map.Coord[ 事件線段頂點 1]
            ?????????????????? ? ??????Y_Map.Coord[
            事件線段頂點 2])

            11.??? ????????nowM??? ? ? Root.M

            12.??? ????????nowLine? ? ? Root.Line

            13.??? ????? ???ans??? ? ? ans? +? lastLine * 2 * (X_Map[I] – Y_Map[I-1])

            14.??? ????????ans????? ? ? ans? +? |nowM – lastM|

            15.??? ????????lasM???? ? ? nowM

            16.??? ????????lastLine?? ? ? nowLine

            參考論文《IOI98試題PICTURE談起 陳宏

            #include? < stdio.h >
            #include?
            < stdlib.h >

            const ? int ?maxn? = ? 5010 ;
            // 寫一個線段樹的過程
            struct ?Lines_tree
            {
            ????Lines_tree?
            * ?lchild,? * ?rchild;
            ????
            int ?m;? // 測度
            ???? int ?cnt;??? // count
            ???? int ?lines;? // 連續段數
            ???? int ?lbd,?rbd;? // 左右端點是否被覆蓋?
            ???? int ?f,?r;? // 左右端點
            }
            ;
            Lines_tree
            * ?root;
            struct ?rec { int ?x,?y,?x1,?y1;} r[maxn];
            struct ?Line
            {
            ????
            int ?x,?y1,?y2; int ?sign;
            ????Line(
            int ?a,? int ?b,? int ?c, int ?d):x(a),?y1(b),?y2(c),?sign(d) {}
            ????Line(
            void ):x( 0 ),y1( 0 ),y2( 0 ),sign( 0 ) {} ?
            }
            line[ 2 * maxn + 10 ];
            int ?nr;
            int ?ans;

            void ?make_tree( int ?a,? int ?b,?Lines_tree * ?node)
            {
            ????node
            -> lines? = ? 0 ;?node -> m? = ? 0 ;?node -> cnt? = ? 0 ;
            ????node?
            -> ?lbd? = ? 0 ;?node? -> ?rbd? = ? 0 ;
            ????node
            -> lchild? = ?NULL;?node -> rchild? = ?NULL;
            ????node
            -> f? = ?a;?node -> r? = ?b;
            ????
            if (b - a > 1 )
            ????
            {
            ????????node
            -> lchild? = ? new ?Lines_tree;
            ????????make_tree(a,?(a
            + b) / 2 ,?node -> lchild);
            ????????node
            -> rchild? = ? new ?Lines_tree;
            ????????make_tree((a
            + b) / 2 ,?b,?node -> rchild);
            ????}

            }


            void ?make( int ?a,? int ?b)
            {
            ?????root?
            = ? new ?Lines_tree;
            ?????make_tree(a,?b,?root);
            }


            void ?update(Lines_tree? * ?now)??? // lbd,?rbd,?m的計算都在這個里面!
            {
            ????
            if (now -> cnt > 0 )?now -> m? = ?now -> r - now -> f;
            ????
            else ? if (now -> r == now -> f + 1 )?now -> m? = ? 0 ;
            ????
            else ?now -> m? = ?now -> lchild -> m? + ?now -> rchild -> m;
            }


            void ?update2(Lines_tree * ?now)
            {
            ????
            if (now -> cnt > 0 )? {?now -> lbd? = ? 1 ;?now -> rbd? = ? 1 ;?now -> lines? = ? 1 ;?}
            ????
            else ? if (now -> f + 1 == now -> r)? {now -> lbd? = ? 0 ;?now -> rbd? = ? 0 ;?now -> lines? = ? 0 ;}
            ????
            else
            ????
            {
            ????????now
            -> lbd? = ?now -> lchild -> lbd;?now -> rbd? = ?now -> rchild -> rbd;
            ????????now
            -> lines? = ?now -> lchild -> lines + now -> rchild -> lines? - ?now -> lchild -> rbd * now -> rchild -> lbd;
            ????}

            }


            void ?insert( int ?a,? int ?b,?Lines_tree? * ?now)
            {
            ????
            if (a <= now -> f? && ?b >= now -> r)
            ????????now
            -> cnt ++ ;
            ????
            if (now -> r - now -> f > 1 )
            ????
            {
            ????????
            if (a < (now -> f + now -> r) / 2 )????insert(a,?b,?now -> lchild);
            ????????
            if (b > (now -> f + now -> r) / 2 )????insert(a,?b,?now -> rchild);
            ????}

            ????update(now);
            ????update2(now);
            }


            void ?del( int ?a,? int ?b,?Lines_tree? * ?now)
            {
            ????
            if (a <= now -> f? && ?b >= now -> f)
            ????
            {
            ????????
            if (a == now -> f)?now -> lbd? = ? 0 ;
            ????????
            if (b == now -> r)?now -> rbd? = ? 0 ;
            ????????now
            -> cnt -- ;
            ????}

            ????
            if (now -> r - now -> f > 1 )
            ????
            {
            ????????
            if (a < (now -> f + now -> r) / 2 )????del(a,?b,?now -> lchild);
            ????????
            if (b > (now -> f + now -> r) / 2 )????del(a,?b,?now -> rchild);
            ????}

            ????update(now);
            ????update2(now);
            }


            int ?cmp( const ? void ? * ?a,? const ? void ? * ?b)
            {
            ????
            return ?( * (Line * )a).x? - ?( * (Line * )b).x;??? // 這里不要寫成->
            }


            void ?init()
            {
            ????
            // initiation
            ????
            // input
            ???? int ?i;
            ????scanf(
            " %d " ,? & nr);
            ????
            for (i = 0 ;?i < nr;?i ++ )
            ????
            {
            ????????scanf(
            " %d%d%d%d " ,? & r[i].x,? & r[i].y,? & r[i].x1,? & r[i].y1);
            ????????line[
            2 * i]? = ?Line(r[i].x,?r[i].y,?r[i].y1,? 0 );
            ????????line[
            2 * i + 1 ]? = ?Line(r[i].x1,?r[i].y,?r[i].y1,? 1 );
            ????}
            ????????
            ????qsort(line,?nr
            * 2 ,? sizeof (line[ 0 ]),?cmp);
            ????
            // pretreatment
            }


            void ?work()
            {
            ????
            int ?nowM? = ? 0 ;
            ????
            int ?nowLine? = ? 0 ;
            ????
            int ?lastM? = ? 0 ;
            ????
            int ?lastLine? = ? 0 ;
            ????
            int ?i;
            ????
            for (i = 0 ;?i < nr * 2 ;?i ++ )
            ????
            {
            ????????
            if (line[i].sign == 0 )
            ????????????insert(line[i].y1,?line[i].y2,?root);
            ????????
            else ?del(line[i].y1,?line[i].y2,?root);
            ????????nowM?
            = ?root -> m;
            ????????nowLine?
            = ?root -> lines;
            ????????ans?
            += ?lastLine? * ? 2 ? * ?(line[i].x - line[i - 1 ].x);
            ????????ans?
            += ?abs(nowM - lastM);
            ????????lastM?
            = ?nowM;
            ????????lastLine?
            = ?nowLine;
            ????}

            }


            void ?output()
            {
            ????printf(
            " %d\n " ,?ans);
            }


            int ?main()
            {
            // ????freopen("t.in",?"r",?stdin);
            ????make( - 10000 ,? 10000 );
            ????init();
            ????work();
            ????output();
            ????
            return ? 0 ;
            }

            Feedback

            # re: 線段樹測度與連續斷的應用 on IOI98 pictures  回復  更多評論   

            2007-04-07 01:01 by
            void del( int a, int b, Lines_tree * now)
            {
            if (a <= now -> f && b >= now -> f)


            這個是不是有問題?
            久久精品免费全国观看国产| 亚洲精品NV久久久久久久久久| 婷婷综合久久中文字幕蜜桃三电影| 97精品国产97久久久久久免费| 久久久精品人妻一区二区三区蜜桃 | 2021久久国自产拍精品| 婷婷久久香蕉五月综合加勒比| 久久精品天天中文字幕人妻| 91精品国产91久久久久久青草 | 久久国产精品久久国产精品| 无码任你躁久久久久久| 粉嫩小泬无遮挡久久久久久| 中文国产成人精品久久亚洲精品AⅤ无码精品 | 久久婷婷综合中文字幕| 亚洲伊人久久综合影院| 97久久综合精品久久久综合| 色综合合久久天天给综看| 国产亚洲精久久久久久无码| 欧美性大战久久久久久| 久久噜噜电影你懂的| 亚洲综合精品香蕉久久网| 人妻精品久久久久中文字幕| 久久青草国产手机看片福利盒子| 日产精品久久久久久久| 久久人人超碰精品CAOPOREN| 国内精品人妻无码久久久影院| 青青草原综合久久大伊人| 久久久久国色AV免费看图片 | 久久笫一福利免费导航| 国产精品美女久久久久AV福利 | 四虎国产精品免费久久5151| 久久男人Av资源网站无码软件| 波多野结衣久久一区二区| 久久久免费观成人影院| 久久精品国产亚洲7777| 国产高清美女一级a毛片久久w| 久久精品国产半推半就| 9久久9久久精品| 69久久精品无码一区二区| 久久婷婷久久一区二区三区| 国产精品久久久久一区二区三区 |